These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33007505)

  • 21. Corrosion inhibition of deposit-covered X80 pipeline steel in seawater containing Pseudomonas stutzeri.
    Liu H; Jin Z; Wang Z; Liu H; Meng G; Liu H
    Bioelectrochemistry; 2023 Feb; 149():108279. PubMed ID: 36191579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristic and Mechanistic Investigation of Stress-Assisted Microbiologically Influenced Corrosion of X80 Steel in Near-Neutral Solutions.
    Guo H; Zhong R; Liu B; Yang J; Liu Z; Du C; Li X
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular electron transfer routes in microbiologically influenced corrosion of X80 steel by Bacillus licheniformis.
    Li J; Du C; Liu Z; Li X
    Bioelectrochemistry; 2022 Jun; 145():108074. PubMed ID: 35114477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biofilms affecting progression of mild steel corrosion by Gram positive Bacillus sp.
    Lin J; Madida BB
    J Basic Microbiol; 2015 Oct; 55(10):1168-78. PubMed ID: 25847372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crevice corrosion of X80 carbon steel induced by sulfate reducing bacteria in simulated seawater.
    Zhang T; Wang J; Li G; Liu H
    Bioelectrochemistry; 2021 Dec; 142():107933. PubMed ID: 34560601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Temperature and Applied Potential on the Stress Corrosion Cracking of X80 Steel in a Xinzhou Simulated Soil Solution.
    Cheng Y; Liu P; Yang M
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low efficiency of cathodic protection in marine tidal corrosion of X80 steel in the presence of Pseudomonas sp.
    Zhou X; Wang Q; Su H; Tan Z; Li C; Li Z; Wu T
    Bioelectrochemistry; 2024 Jun; 157():108656. PubMed ID: 38290303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.
    Jia R; Yang D; Xu D; Gu T
    Bioelectrochemistry; 2017 Dec; 118():38-46. PubMed ID: 28715664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitigation of Desulfovibrio ferrophilus IS5 degradation of X80 carbon steel mechanical properties using a green biocide.
    Li Z; Yang J; Lu S; Dou W; Gu T
    Biodegradation; 2024 Jul; 35(4):439-449. PubMed ID: 38261083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.
    Zuo R; Wood TK
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):747-53. PubMed ID: 15278311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pH Effect of Natural Gas Hydrate on X80 Steel Solid-Liquid Phase Scouring Corrosion.
    Deng S; Ling D; Zhou B; Gong Y; Shen X; Liu L; Zhao H
    ACS Omega; 2021 Feb; 6(4):3017-3023. PubMed ID: 33553919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion.
    Spark AJ; Law DW; Ward LP; Cole IS; Best AS
    Environ Sci Technol; 2017 Aug; 51(15):8501-8509. PubMed ID: 28633523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uniform and Pitting Corrosion of Carbon Steel by Shewanella oneidensis MR-1 under Nitrate-Reducing Conditions.
    Miller RB; Lawson K; Sadek A; Monty CN; Senko JM
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical and Mechanical Properties of Cathodically Protected X80 Steel in Different Temperature Soil.
    Liu W; Meng Y; Zhao J; Wen W; Gong M; Wu S; Li S; Yu M; Liu J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitigation of galvanized steel biocorrosion by Pseudomonas aeruginosa biofilm using a biocide enhanced by trehalase.
    Xu L; Ivanova SA; Gu T
    Bioelectrochemistry; 2023 Dec; 154():108508. PubMed ID: 37451042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accelerated role of exogenous riboflavin in selective Desulfovibrio desulfuricans corrosion of pipeline welded joints.
    Wang Q; Zhou X; Wang B; Liu M; Li C; Tan Z; Wu T
    Bioelectrochemistry; 2023 Oct; 153():108469. PubMed ID: 37235890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Corrosion behavior and mechanism of carbon steel influenced by interior deposit microflora of an in-service pipeline.
    Su H; Tang R; Peng X; Gao A; Han Y
    Bioelectrochemistry; 2020 Apr; 132():107406. PubMed ID: 31812086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings.
    Abdoli L; Suo X; Li H
    Colloids Surf B Biointerfaces; 2016 Sep; 145():688-694. PubMed ID: 27289310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Corrosion Behavior of X80 Steel with Coupled Coating Defects under Alternating Current Interference in Alkaline Environment.
    Li Z; Li C; Qian H; Li J; Huang L; Du C
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inadequate dosing of THPS treatment increases microbially influenced corrosion of pipeline steel by inducing biofilm growth of Desulfovibrio hontreensis SY-21.
    Xu L; Guan F; Ma Y; Zhang R; Zhang Y; Zhai X; Dong X; Wang Y; Duan J; Hou B
    Bioelectrochemistry; 2022 Jun; 145():108048. PubMed ID: 35093618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.