BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33007598)

  • 1. Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process.
    Beiyuan J; Fang L; Chen H; Li M; Liu D; Wang Y
    Environ Pollut; 2021 Jan; 268(Pt A):115719. PubMed ID: 33007598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration.
    Tandy S; Schulin R; Nowack B
    Environ Sci Technol; 2006 Apr; 40(8):2753-8. PubMed ID: 16683619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field.
    Attinti R; Barrett KR; Datta R; Sarkar D
    Environ Pollut; 2017 Jun; 225():524-533. PubMed ID: 28318794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of Cu and nitrate leaching risk associated with EDDS-enhanced phytoextraction process by exogenous inoculation of plant growth promoting rhizobacteria.
    Ju W; Duan C; Liu L; Jin X; Bravo-Ruiseco G; Mei Y; Fang L
    Chemosphere; 2022 Jan; 287(Pt 3):132288. PubMed ID: 34555581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of chelates (EDTA, EDDS, NTA) on phytoavailability of heavy metals (As, Cd, Cu, Pb, Zn) using ryegrass (Lolium multiflorum Lam.).
    Hai NNS; Sanderson P; Qi F; Du J; Nong NN; Bolan N; Naidu R
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):42102-42116. PubMed ID: 35366209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS).
    Fässler E; Evangelou MW; Robinson BH; Schulin R
    Chemosphere; 2010 Aug; 80(8):901-7. PubMed ID: 20537682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction.
    Epelde L; Hernández-Allica J; Becerril JM; Blanco F; Garbisu C
    Sci Total Environ; 2008 Aug; 401(1-3):21-8. PubMed ID: 18499230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of [S,S]-ethylenediaminedisuccinic acid and nitrilotriacetic acid on the efficiency of Pb phytostabilization by Athyrium wardii (Hook.) grown in Pb-contaminated soils.
    Zhao L; Li T; Yu H; Zhang X; Zheng Z
    J Environ Manage; 2016 Nov; 182():94-100. PubMed ID: 27454100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.
    Luo C; Shen Z; Li X
    Chemosphere; 2005 Mar; 59(1):1-11. PubMed ID: 15698638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers.
    Tandy S; Schulin R; Nowack B
    Chemosphere; 2006 Mar; 62(9):1454-63. PubMed ID: 16083944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.
    Meers E; Ruttens A; Hopgood MJ; Samson D; Tack FM
    Chemosphere; 2005 Feb; 58(8):1011-22. PubMed ID: 15664609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils.
    Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L
    Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering biodegradable chelant-enhanced phytoremediation through microbes and nitrogen transformation in contaminated soils.
    Fang L; Wang M; Cai L; Cang L
    Environ Sci Pollut Res Int; 2017 Jun; 24(17):14627-14636. PubMed ID: 28452034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum.
    Evangelou MW; Bauer U; Ebel M; Schaeffer A
    Chemosphere; 2007 Jun; 68(2):345-53. PubMed ID: 17280708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of EDDS Application on Soil Cu/Cd Availability and Uptake/transport by Castor].
    Liu WY; Wu G; Hu HQ
    Huan Jing Ke Xue; 2024 Mar; 45(3):1803-1811. PubMed ID: 38471891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm.
    Sidhu GPS; Bali AS; Singh HP; Batish DR; Kohli RK
    Chemosphere; 2018 Aug; 205():234-243. PubMed ID: 29702343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zn phytoextraction and recycling of alfalfa biomass as potential Zn-biofortified feed crop.
    Wang X; Fernandes de Souza M; Li H; Tack FMG; Ok YS; Meers E
    Sci Total Environ; 2021 Mar; 760():143424. PubMed ID: 33223175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils.
    Wang K; Liu Y; Song Z; Wang D; Qiu W
    Chemosphere; 2019 Dec; 237():124480. PubMed ID: 31394449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.