BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33007949)

  • 21. CYP27A1-dependent anti-melanoma activity of limonoid natural products targets mitochondrial metabolism.
    Cho H; Shen Q; Zhang LH; Okumura M; Kawakami A; Ambrose J; Sigoillot F; Miller HR; Gleim S; Cobos-Correa A; Wang Y; Piechon P; Roma G; Eggimann F; Moore C; Aspesi P; Mapa FA; Burks H; Ross NT; Krastel P; Hild M; Maimone TJ; Fisher DE; Nomura DK; Tallarico JA; Canham SM; Jenkins JL; Forrester WC
    Cell Chem Biol; 2021 Oct; 28(10):1407-1419.e6. PubMed ID: 33794192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondria-targeted magnolol inhibits OXPHOS, proliferation, and tumor growth via modulation of energetics and autophagy in melanoma cells.
    Cheng G; Hardy M; Zielonka J; Weh K; Zielonka M; Boyle KA; Abu Eid M; McAllister D; Bennett B; Kresty LA; Dwinell MB; Kalyanaraman B
    Cancer Treat Res Commun; 2020; 25():100210. PubMed ID: 32987287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative modulation of mitochondrial oxidative phosphorylation by epigallocatechin-3 gallate leads to growth arrest and apoptosis in human malignant pleural mesothelioma cells.
    Valenti D; de Bari L; Manente GA; Rossi L; Mutti L; Moro L; Vacca RA
    Biochim Biophys Acta; 2013 Dec; 1832(12):2085-96. PubMed ID: 23911347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis.
    Gohil VM; Sheth SA; Nilsson R; Wojtovich AP; Lee JH; Perocchi F; Chen W; Clish CB; Ayata C; Brookes PS; Mootha VK
    Nat Biotechnol; 2010 Mar; 28(3):249-55. PubMed ID: 20160716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metformin Targets Mitochondrial Glycerophosphate Dehydrogenase to Control Rate of Oxidative Phosphorylation and Growth of Thyroid Cancer
    Thakur S; Daley B; Gaskins K; Vasko VV; Boufraqech M; Patel D; Sourbier C; Reece J; Cheng SY; Kebebew E; Agarwal S; Klubo-Gwiezdzinska J
    Clin Cancer Res; 2018 Aug; 24(16):4030-4043. PubMed ID: 29691295
    [No Abstract]   [Full Text] [Related]  

  • 26. Importance of glycolysis and oxidative phosphorylation in advanced melanoma.
    Ho J; de Moura MB; Lin Y; Vincent G; Thorne S; Duncan LM; Hui-Min L; Kirkwood JM; Becker D; Van Houten B; Moschos SJ
    Mol Cancer; 2012 Oct; 11():76. PubMed ID: 23043612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative phosphorylation in melanoma.
    Gopal YN; Rizos H; Chen G; Deng W; Frederick DT; Cooper ZA; Scolyer RA; Pupo G; Komurov K; Sehgal V; Zhang J; Patel L; Pereira CG; Broom BM; Mills GB; Ram P; Smith PD; Wargo JA; Long GV; Davies MA
    Cancer Res; 2014 Dec; 74(23):7037-47. PubMed ID: 25297634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic reprogramming and AMPKα1 pathway activation by caulerpin in colorectal cancer cells.
    Yu H; Zhang H; Dong M; Wu Z; Shen Z; Xie Y; Kong Z; Dai X; Xu B
    Int J Oncol; 2017 Jan; 50(1):161-172. PubMed ID: 27922662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers.
    Chen CL; Lin CY; Kung HJ
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial oxidative stress is the Achille's heel of melanoma cells resistant to Braf-mutant inhibitor.
    Corazao-Rozas P; Guerreschi P; Jendoubi M; André F; Jonneaux A; Scalbert C; Garçon G; Malet-Martino M; Balayssac S; Rocchi S; Savina A; Formstecher P; Mortier L; Kluza J; Marchetti P
    Oncotarget; 2013 Nov; 4(11):1986-98. PubMed ID: 24161908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining lipoic acid to methylene blue reduces the Warburg effect in CHO cells: From TCA cycle activation to enhancing monoclonal antibody production.
    Montégut L; Martínez-Basilio PC; da Veiga Moreira J; Schwartz L; Jolicoeur M
    PLoS One; 2020; 15(4):e0231770. PubMed ID: 32298377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in metformin‑based metabolic therapy for non‑small cell lung cancer (Review).
    Chen N; Zhou YS; Wang LC; Huang JB
    Oncol Rep; 2022 Mar; 47(3):. PubMed ID: 35039878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Double genetic disruption of lactate dehydrogenases A and B is required to ablate the "Warburg effect" restricting tumor growth to oxidative metabolism.
    Ždralević M; Brand A; Di Ianni L; Dettmer K; Reinders J; Singer K; Peter K; Schnell A; Bruss C; Decking SM; Koehl G; Felipe-Abrio B; Durivault J; Bayer P; Evangelista M; O'Brien T; Oefner PJ; Renner K; Pouysségur J; Kreutz M
    J Biol Chem; 2018 Oct; 293(41):15947-15961. PubMed ID: 30158244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Melanoma tumors exhibit a variable but distinct metabolic signature.
    Feichtinger RG; Lang R; Geilberger R; Rathje F; Mayr JA; Sperl W; Bauer JW; Hauser-Kronberger C; Kofler B; Emberger M
    Exp Dermatol; 2018 Feb; 27(2):204-207. PubMed ID: 29131438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geissoschizine methyl ether protects oxidative stress-mediated cytotoxicity in neurons through the 'Neuronal Warburg Effect'.
    Sun J; Ren X; Qi W; Yuan D; Simpkins JW
    J Ethnopharmacol; 2016 Jul; 187():249-58. PubMed ID: 27114061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A requirement for autophagy in HMGA2-induced metabolic reprogramming to support Cd-induced migration.
    Hasenbilige ; Mei J; Dlamini MB; Gao Z; Jiang L; Li Q; Geng C; Shi X; Liu Y; Kong Y; Cao J
    Toxicology; 2021 Oct; 462():152928. PubMed ID: 34481905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation.
    Marín-Hernández A; Gallardo-Pérez JC; López-Ramírez SY; García-García JD; Rodríguez-Zavala JS; Ruiz-Ramírez L; Gracia-Mora I; Zentella-Dehesa A; Sosa-Garrocho M; Macías-Silva M; Moreno-Sánchez R; Rodríguez-Enríquez S
    Arch Toxicol; 2012 May; 86(5):753-66. PubMed ID: 22349057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells.
    Rodríguez-Enríquez S; Vital-González PA; Flores-Rodríguez FL; Marín-Hernández A; Ruiz-Azuara L; Moreno-Sánchez R
    Toxicol Appl Pharmacol; 2006 Sep; 215(2):208-17. PubMed ID: 16580038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy Metabolism Drugs Block Triple Negative Breast Metastatic Cancer Cell Phenotype.
    Pacheco-Velázquez SC; Robledo-Cadena DX; Hernández-Reséndiz I; Gallardo-Pérez JC; Moreno-Sánchez R; Rodríguez-Enríquez S
    Mol Pharm; 2018 Jun; 15(6):2151-2164. PubMed ID: 29746779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.