BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33008121)

  • 21. Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors.
    Lin CY; Chang YH; Kao CY; Lu CH; Sung LY; Yen TC; Lin KJ; Hu YC
    Biomaterials; 2012 May; 33(14):3682-92. PubMed ID: 22361095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monocytes Seeded on Engineered Hypertrophic Cartilage Do Not Enhance Endochondral Ossification Capacity.
    Todorov A; Scotti C; Barbero A; Scherberich A; Papadimitropoulos A; Martin I
    Tissue Eng Part A; 2017 Jul; 23(13-14):708-715. PubMed ID: 28338424
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of an Engineered Hybrid Matrix for Bone Regeneration via Endochondral Ossification.
    Mikael PE; Golebiowska AA; Xin X; Rowe DW; Nukavarapu SP
    Ann Biomed Eng; 2020 Mar; 48(3):992-1005. PubMed ID: 31037444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo.
    Yang Y; Lin H; Shen H; Wang B; Lei G; Tuan RS
    Acta Biomater; 2018 Mar; 69():71-82. PubMed ID: 29317369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering.
    Tang C; Xu Y; Jin C; Min BH; Li Z; Pei X; Wang L
    Artif Organs; 2013 Dec; 37(12):E179-90. PubMed ID: 24251792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acceleration of Bone Regeneration Induced by a Soft-Callus Mimetic Material.
    Longoni A; Utomo L; Robinson A; Levato R; Rosenberg AJWP; Gawlitta D
    Adv Sci (Weinh); 2022 Feb; 9(6):e2103284. PubMed ID: 34962103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recapitulating endochondral ossification: a promising route to in vivo bone regeneration.
    Thompson EM; Matsiko A; Farrell E; Kelly DJ; O'Brien FJ
    J Tissue Eng Regen Med; 2015 Aug; 9(8):889-902. PubMed ID: 24916192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endochondral bone tissue engineering using embryonic stem cells.
    Jukes JM; Both SK; Leusink A; Sterk LM; van Blitterswijk CA; de Boer J
    Proc Natl Acad Sci U S A; 2008 May; 105(19):6840-5. PubMed ID: 18467492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair.
    Lin CY; Chang YH; Li KC; Lu CH; Sung LY; Yeh CL; Lin KJ; Huang SF; Yen TC; Hu YC
    Biomaterials; 2013 Dec; 34(37):9401-12. PubMed ID: 24016854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decellularized cartilage-derived matrix as substrate for endochondral bone regeneration.
    Gawlitta D; Benders KE; Visser J; van der Sar AS; Kempen DH; Theyse LF; Malda J; Dhert WJ
    Tissue Eng Part A; 2015 Feb; 21(3-4):694-703. PubMed ID: 25316202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage.
    Huang Z; Godkin O; Schulze-Tanzil G
    Stem Cell Rev Rep; 2017 Feb; 13(1):50-67. PubMed ID: 27826794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ectopic osteochondral formation of biomimetic porous PVA-n-HA/PA6 bilayered scaffold and BMSCs construct in rabbit.
    Qu D; Li J; Li Y; Khadka A; Zuo Y; Wang H; Liu Y; Cheng L
    J Biomed Mater Res B Appl Biomater; 2011 Jan; 96(1):9-15. PubMed ID: 20967773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair.
    Bernhard J; Ferguson J; Rieder B; Heimel P; Nau T; Tangl S; Redl H; Vunjak-Novakovic G
    Biomaterials; 2017 Sep; 139():202-212. PubMed ID: 28622604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding tissue-engineered endochondral ossification; towards improved bone formation.
    Knuth C; Kiernan C; Wolvius E; Narcisi R; Farrell E
    Eur Cell Mater; 2019 Apr; 37():277-291. PubMed ID: 30968944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Winner of the 2013 Young Investigator Award for the Society for Biomaterials annual meeting and exposition, April 10-13, 2013, Boston, Massachusetts. Osteogenic differentiation of mesenchymal stem cells on demineralized and devitalized biodegradable polymer and extracellular matrix hybrid constructs.
    Thibault RA; Mikos AG; Kasper FK
    J Biomed Mater Res A; 2013 May; 101(5):1225-36. PubMed ID: 23505119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats.
    Kruyt MC; de Bruijn JD; Wilson CE; Oner FC; van Blitterswijk CA; Verbout AJ; Dhert WJ
    Tissue Eng; 2003 Apr; 9(2):327-36. PubMed ID: 12740095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue-specific extracellular matrix scaffolds for the regeneration of spatially complex musculoskeletal tissues.
    Cunniffe GM; Díaz-Payno PJ; Sheehy EJ; Critchley SE; Almeida HV; Pitacco P; Carroll SF; Mahon OR; Dunne A; Levingstone TJ; Moran CJ; Brady RT; O'Brien FJ; Brama PAJ; Kelly DJ
    Biomaterials; 2019 Jan; 188():63-73. PubMed ID: 30321864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model.
    Tortelli F; Tasso R; Loiacono F; Cancedda R
    Biomaterials; 2010 Jan; 31(2):242-9. PubMed ID: 19796807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.