These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 33008826)
1. Revealing the Metabolic Flexibility of " Guedes da Silva L; Olavarria Gamez K; Castro Gomes J; Akkermans K; Welles L; Abbas B; van Loosdrecht MCM; Wahl SA Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33008826 [TBL] [Abstract][Full Text] [Related]
2. Anaerobic glyoxylate cycle activity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enriched in enhanced biological phosphorus removal communities. Burow LC; Mabbett AN; Blackall LL ISME J; 2008 Oct; 2(10):1040-51. PubMed ID: 18784756 [TBL] [Abstract][Full Text] [Related]
3. Candidatus Thiothrix phosphatis SCUT-1: A novel polyphosphate-accumulating organism abundant in the enhanced biological phosphorus removal system. Chen L; Deng X; Xie X; Wang K; Chen H; Cen S; Huang F; Wang C; Li Y; Wei C; Qiu G Water Res; 2024 Dec; 267():122479. PubMed ID: 39369504 [TBL] [Abstract][Full Text] [Related]
4. Prevalence of 'Candidatus Accumulibacter phosphatis' type II under phosphate limiting conditions. Welles L; Lopez-Vazquez CM; Hooijmans CM; van Loosdrecht MCM; Brdjanovic D AMB Express; 2016 Dec; 6(1):44. PubMed ID: 27376945 [TBL] [Abstract][Full Text] [Related]
5. Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake. Welles L; Tian WD; Saad S; Abbas B; Lopez-Vazquez CM; Hooijmans CM; van Loosdrecht MC; Brdjanovic D Water Res; 2015 Oct; 83():354-66. PubMed ID: 26189167 [TBL] [Abstract][Full Text] [Related]
6. Accumulibacter diversity at the sub-clade level impacts enhanced biological phosphorus removal performance. Kolakovic S; Freitas EB; Reis MAM; Carvalho G; Oehmen A Water Res; 2021 Jul; 199():117210. PubMed ID: 34004444 [TBL] [Abstract][Full Text] [Related]
7. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. Lu H; Oehmen A; Virdis B; Keller J; Yuan Z Water Res; 2006 Dec; 40(20):3838-48. PubMed ID: 17070894 [TBL] [Abstract][Full Text] [Related]
8. Trehalose as an osmolyte in Candidatus Accumulibacter phosphatis. de Graaff DR; van Loosdrecht MCM; Pronk M Appl Microbiol Biotechnol; 2021 Jan; 105(1):379-388. PubMed ID: 33074418 [TBL] [Abstract][Full Text] [Related]
9. Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions. Lu H; Keller J; Yuan Z Water Res; 2007 Dec; 41(20):4646-56. PubMed ID: 17658580 [TBL] [Abstract][Full Text] [Related]
10. Involvement of the TCA cycle in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs). Zhou Y; Pijuan M; Zeng RJ; Yuan Z Water Res; 2009 Mar; 43(5):1330-40. PubMed ID: 19144373 [TBL] [Abstract][Full Text] [Related]
11. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)? Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522 [TBL] [Abstract][Full Text] [Related]
12. Effect of Lactate on the Microbial Community and Process Performance of an EBPR System. Rubio-Rincón FJ; Welles L; Lopez-Vazquez CM; Abbas B; van Loosdrecht MCM; Brdjanovic D Front Microbiol; 2019; 10():125. PubMed ID: 30833933 [No Abstract] [Full Text] [Related]
13. Butyrate can support PAOs but not GAOs in tropical climates. Wang L; Liu J; Oehmen A; Le C; Geng Y; Zhou Y Water Res; 2021 Apr; 193():116884. PubMed ID: 33556694 [TBL] [Abstract][Full Text] [Related]
14. Integrated Omic Analyses Provide Evidence that a " Camejo PY; Oyserman BO; McMahon KD; Noguera DR mSystems; 2019; 4(1):. PubMed ID: 30944872 [TBL] [Abstract][Full Text] [Related]
15. Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis. Oyserman BO; Noguera DR; del Rio TG; Tringe SG; McMahon KD ISME J; 2016 Apr; 10(4):810-22. PubMed ID: 26555245 [TBL] [Abstract][Full Text] [Related]
16. The phototrophic metabolic behaviour of Candidatus accumulibacter. Carvalho VCF; Gan AZM; Shon A; Kolakovic S; Freitas EB; Reis MAM; Fradinho JC; Oehmen A Water Res; 2024 Aug; 259():121865. PubMed ID: 38851111 [TBL] [Abstract][Full Text] [Related]
17. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Oehmen A; Yuan Z; Blackall LL; Keller J Biotechnol Bioeng; 2005 Jul; 91(2):162-8. PubMed ID: 15892052 [TBL] [Abstract][Full Text] [Related]
18. Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. Qiu G; Zuniga-Montanez R; Law Y; Thi SS; Nguyen TQN; Eganathan K; Liu X; Nielsen PH; Williams RBH; Wuertz S Water Res; 2019 Feb; 149():496-510. PubMed ID: 30476778 [TBL] [Abstract][Full Text] [Related]
19. Candidatus Accumulibacter use fermentation products for enhanced biological phosphorus removal. Chen L; Wei G; Zhang Y; Wang K; Wang C; Deng X; Li Y; Xie X; Chen J; Huang F; Chen H; Zhang B; Wei C; Qiu G Water Res; 2023 Nov; 246():120713. PubMed ID: 37839225 [TBL] [Abstract][Full Text] [Related]
20. Glutamate as sole carbon source for enhanced biological phosphorus removal. Rey-Martínez N; Badia-Fabregat M; Guisasola A; Baeza JA Sci Total Environ; 2019 Mar; 657():1398-1408. PubMed ID: 30677906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]