These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33008877)

  • 1. Dynamic and reversible shape response of red blood cells in synthetic liquid crystals.
    Nayani K; Evans AA; Spagnolie SE; Abbott NL
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26083-26090. PubMed ID: 33008877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Straining soft colloids in aqueous nematic liquid crystals.
    Mushenheim PC; Pendery JS; Weibel DB; Spagnolie SE; Abbott NL
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5564-9. PubMed ID: 27140607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus.
    Chang HY; Li X; Karniadakis GE
    Biophys J; 2017 Jul; 113(2):481-490. PubMed ID: 28746858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.
    Tan Y; Sun D; Wang J; Huang W
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease.
    Chang HY; Li X; Li H; Karniadakis GE
    PLoS Comput Biol; 2016 Oct; 12(10):e1005173. PubMed ID: 27792725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of red blood cell mechanics during morphological changes.
    Park Y; Best CA; Badizadegan K; Dasari RR; Feld MS; Kuriabova T; Henle ML; Levine AJ; Popescu G
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6731-6. PubMed ID: 20351261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic modes of red blood cells in oscillatory shear flow.
    Noguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061920. PubMed ID: 20866453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft matter from liquid crystals.
    Kim YK; Noh J; Nayani K; Abbott NL
    Soft Matter; 2019 Sep; 15(35):6913-6929. PubMed ID: 31441481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape memory of human red blood cells.
    Fischer TM
    Biophys J; 2004 May; 86(5):3304-13. PubMed ID: 15111443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical clustering of red blood cells in capillary vessels.
    Boryczko K; Dzwinel W; Yuen DA
    J Mol Model; 2003 Feb; 9(1):16-33. PubMed ID: 12638008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric, osmotic, and membrane mechanical properties of density-separated human red cells.
    Linderkamp O; Meiselman HJ
    Blood; 1982 Jun; 59(6):1121-7. PubMed ID: 7082818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability.
    Reichel F; Mauer J; Nawaz AA; Gompper G; Guck J; Fedosov DA
    Biophys J; 2019 Jul; 117(1):14-24. PubMed ID: 31235179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State diagram for wall adhesion of red blood cells in shear flow: from crawling to flipping.
    Dasanna AK; Fedosov DA; Gompper G; Schwarz US
    Soft Matter; 2019 Jul; 15(27):5511-5520. PubMed ID: 31241632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why do red blood cells have asymmetric shapes even in a symmetric flow?
    Kaoui B; Biros G; Misbah C
    Phys Rev Lett; 2009 Oct; 103(18):188101. PubMed ID: 19905834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformability and intrinsic material properties of neonatal red blood cells.
    Linderkamp O; Nash GB; Wu PY; Meiselman HJ
    Blood; 1986 May; 67(5):1244-50. PubMed ID: 3697506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.