These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33009439)

  • 1. Auditory local-global temporal processing: evidence for perceptual reorganization with musical expertise.
    Susini P; Jiaouan SJ; Brunet E; Houix O; Ponsot E
    Sci Rep; 2020 Oct; 10(1):16390. PubMed ID: 33009439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing of complex auditory patterns in musicians and nonmusicians.
    Boh B; Herholz SC; Lappe C; Pantev C
    PLoS One; 2011; 6(7):e21458. PubMed ID: 21750713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Musical training enhances automatic encoding of melodic contour and interval structure.
    Fujioka T; Trainor LJ; Ross B; Kakigi R; Pantev C
    J Cogn Neurosci; 2004; 16(6):1010-21. PubMed ID: 15298788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Musical training shapes neural responses to melodic and prosodic expectation.
    Zioga I; Di Bernardi Luft C; Bhattacharya J
    Brain Res; 2016 Nov; 1650():267-282. PubMed ID: 27622645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm.
    Vuust P; Brattico E; Seppänen M; Näätänen R; Tervaniemi M
    Neuropsychologia; 2012 Jun; 50(7):1432-43. PubMed ID: 22414595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Musicians' edge: A comparison of auditory processing, cognitive abilities and statistical learning.
    Mandikal Vasuki PR; Sharma M; Demuth K; Arciuli J
    Hear Res; 2016 Dec; 342():112-123. PubMed ID: 27770623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of perceptual grouping effects in the processing of sound omission by musicians and nonmusicians.
    Ono K; Altmann CF; Matsuhashi M; Mima T; Fukuyama H
    Hear Res; 2015 Jan; 319():25-31. PubMed ID: 25446245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pitch-interval discrimination and musical expertise: is the semitone a perceptual boundary?
    Mary Zarate J; Ritson CR; Poeppel D
    J Acoust Soc Am; 2012 Aug; 132(2):984-93. PubMed ID: 22894219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How musical experience affects tone perception efficiency by musicians of tonal and non-tonal speakers?
    Chen S; Zhu Y; Wayland R; Yang Y
    PLoS One; 2020; 15(5):e0232514. PubMed ID: 32384088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perception of hierarchical boundaries in music and its modulation by expertise.
    Zhang J; Jiang C; Zhou L; Yang Y
    Neuropsychologia; 2016 Oct; 91():490-498. PubMed ID: 27659874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tone-language speakers show hemispheric specialization and differential cortical processing of contour and interval cues for pitch.
    Bidelman GM; Chung WL
    Neuroscience; 2015 Oct; 305():384-92. PubMed ID: 26265549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Musicians and tone-language speakers share enhanced brainstem encoding but not perceptual benefits for musical pitch.
    Bidelman GM; Gandour JT; Krishnan A
    Brain Cogn; 2011 Oct; 77(1):1-10. PubMed ID: 21835531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing of pitch and time sequences in music.
    Neuhaus C; Knösche TR
    Neurosci Lett; 2008 Aug; 441(1):11-5. PubMed ID: 18584960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced brainstem encoding predicts musicians' perceptual advantages with pitch.
    Bidelman GM; Krishnan A; Gandour JT
    Eur J Neurosci; 2011 Feb; 33(3):530-8. PubMed ID: 21198980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Long-Term Musical Training on Cortical Auditory Evoked Potentials.
    Brown CJ; Jeon EK; Driscoll V; Mussoi B; Deshpande SB; Gfeller K; Abbas PJ
    Ear Hear; 2017; 38(2):e74-e84. PubMed ID: 28225736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of musical training on the early auditory cortical representation of pitch transitions as indexed by change-N1.
    Itoh K; Okumiya-Kanke Y; Nakayama Y; Kwee IL; Nakada T
    Eur J Neurosci; 2012 Dec; 36(11):3580-92. PubMed ID: 22958242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crossmodal Correspondence Between Tonal Hierarchy and Visual Brightness: Associating Syntactic Structure and Perceptual Dimensions Across Modalities.
    Maimon NB; Lamy D; Eitan Z
    Multisens Res; 2020 Sep; 33(8):805-836. PubMed ID: 33706266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory organization of sound sequences by a temporal or numerical regularity--a mismatch negativity study comparing musicians and non-musicians.
    van Zuijen TL; Sussman E; Winkler I; Näätänen R; Tervaniemi M
    Brain Res Cogn Brain Res; 2005 May; 23(2-3):270-6. PubMed ID: 15820634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Musical and linguistic expertise influence pre-attentive and attentive processing of non-speech sounds.
    Marie C; Kujala T; Besson M
    Cortex; 2012 Apr; 48(4):447-57. PubMed ID: 21189226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.