BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 3300959)

  • 1. Oncogene-mediated multistep transformation of C3H10T1/2 cells.
    Taparowsky EJ; Heaney ML; Parsons JT
    Cancer Res; 1987 Aug; 47(15):4125-9. PubMed ID: 3300959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperation of oncogenes in the multistep transformation of established fibroblasts in culture.
    Davenport EA; Drobes BL; Menke SL; Vaidya TB; Taparowsky EJ
    Anticancer Res; 1988; 8(5A):959-69. PubMed ID: 2845855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth in culture and tumorigenicity after transfection with the ras oncogene of liver epithelial cells from carcinogen-treated rats.
    Braun L; Goyette M; Yaswen P; Thompson NL; Fausto N
    Cancer Res; 1987 Aug; 47(15):4116-24. PubMed ID: 2440558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolonged inhibition by X-rays of DNA synthesis in cells obtained by transformation of primary rat embryo fibroblasts with oncogenes H-ras and v-myc.
    Wang Y; Iliakis G
    Cancer Res; 1992 Feb; 52(3):508-14. PubMed ID: 1732037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of the carboxy-terminal transforming region of v-Myc: binding to Max is necessary, but not sufficient, for cellular transformation.
    Min S; Mascarenhas NT; Taparowsky EJ
    Oncogene; 1993 Oct; 8(10):2691-701. PubMed ID: 8378081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repression of Myc-Ras cotransformation by Mad is mediated by multiple protein-protein interactions.
    Koskinen PJ; Ayer DE; Eisenman RN
    Cell Growth Differ; 1995 Jun; 6(6):623-9. PubMed ID: 7669717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid induction of an experimental metastatic phenotype in first passage rat embryo cells by cotransfection of EJ c-Ha-ras and c-myc oncogenes.
    Storer RD; Allen HL; Kraynak AR; Bradley MO
    Oncogene; 1988 Feb; 2(2):141-7. PubMed ID: 3285293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ha-ras stimulates the transplasma membrane oxidoreductase activity of C3H10T1/2 cells.
    Crowe RA; Taparowsky EJ; Crane FL
    Biochem Biophys Res Commun; 1993 Oct; 196(2):844-50. PubMed ID: 8240360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malignant transformation of a preneoplastic hamster epidermal cell line by the EJ c-Ha-ras-oncogene.
    Storer RD; Stein RB; Sina JF; DeLuca JG; Allen HL; Bradley MO
    Cancer Res; 1986 Mar; 46(3):1458-64. PubMed ID: 3510726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of c-myc in the transformation of REF52 cells by viral and cellular oncogenes.
    Kohl NE; Ruley HE
    Oncogene; 1987; 2(1):41-8. PubMed ID: 2830582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation suppressor activity of C3G is independent of its CDC25-homology domain.
    Guerrero C; Fernandez-Medarde A; Rojas JM; Font de Mora J; Esteban LM; Santos E
    Oncogene; 1998 Feb; 16(5):613-24. PubMed ID: 9482107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperation between the H-ras oncogene and a truncated derivative of the v-myb oncogene in transformation of hamster embryo fibroblasts.
    Merzak A; Dooghe Y; Pironin M; Perbal B; Vigier P
    Oncogene; 1992 Oct; 7(10):2031-9. PubMed ID: 1408144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated expression of an exogenous c-myc gene is insufficient for transformation and tumorigenic conversion of established fibroblasts.
    Zerlin M; Julius MA; Cerni C; Marcu KB
    Oncogene; 1987 Mar; 1(1):19-27. PubMed ID: 3325875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated fos oncogene in rat embryo fibroblasts transformed by ras and myc oncogenes.
    Denner J; Jandrig B; Spitkovsky DD; Ehm I; Kisselyov FL; Schramm T
    Neoplasma; 1988; 35(3):263-70. PubMed ID: 3405335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. v-Ras and v-Raf block differentiation of transformable C3H10T1/2-derived preadipocytes at lower levels than required for neoplastic transformation.
    Raptis L; Brownell HL; Lu Y; Preston T; Narsimhan RP; Anderson S; Schaefer E; Haliotis T
    Exp Cell Res; 1997 Aug; 235(1):188-97. PubMed ID: 9281368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proto-oncogene fos expression and post-translational modification.
    Barber JR; Sassone-Corsi P; Verma IM
    Prog Clin Biol Res; 1988; 266():23-37. PubMed ID: 3132724
    [No Abstract]   [Full Text] [Related]  

  • 17. Enhanced expression of c-myc and decreased expression of c-fos protooncogenes in chemically and radiation-transformed C3H/10T1/2 Cl 8 mouse embryo cell lines.
    Shuin T; Billings PC; Lillehaug JR; Patierno SR; Roy-Burman P; Landolph JR
    Cancer Res; 1986 Oct; 46(10):5302-11. PubMed ID: 2875790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of chromosome loss in ras/myc-induced Syrian hamster tumors.
    Oshimura M; Koi M; Ozawa N; Sugawara O; Lamb PW; Barrett JC
    Cancer Res; 1988 Mar; 48(6):1623-32. PubMed ID: 2449958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of murine myelomonocytic cells by myc: point mutations in v-myc contribute synergistically to transforming potential.
    Symonds G; Hartshorn A; Kennewell A; O'Mara MA; Bruskin A; Bishop JM
    Oncogene; 1989 Mar; 4(3):285-94. PubMed ID: 2649846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient induction of focus formation in a subclone of NIH3T3 cells by c-myc and its inhibition by serum and by growth factors.
    Blondel B; Talbot N; Merlo GR; Wychowski C; Yokozaki H; Valverius EM; Salomon DS; Bassin RH
    Oncogene; 1990 Jun; 5(6):857-65. PubMed ID: 2193293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.