These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33009653)

  • 1. Developing adaptive control: Age-related differences in task choices and awareness of proactive and reactive control demands.
    Niebaum JC; Chevalier N; Guild RM; Munakata Y
    Cogn Affect Behav Neurosci; 2021 Jun; 21(3):561-572. PubMed ID: 33009653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metacognitive processes in executive control development: the case of reactive and proactive control.
    Chevalier N; Martis SB; Curran T; Munakata Y
    J Cogn Neurosci; 2015 Jun; 27(6):1125-36. PubMed ID: 25603026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anterior Cingulate Cortex Signals the Need to Control Intrusive Thoughts during Motivated Forgetting.
    Crespo-García M; Wang Y; Jiang M; Anderson MC; Lei X
    J Neurosci; 2022 May; 42(21):4342-4359. PubMed ID: 35437275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive control and the avoidance of cognitive control demands across development.
    Niebaum JC; Chevalier N; Guild RM; Munakata Y
    Neuropsychologia; 2019 Feb; 123():152-158. PubMed ID: 29723599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Six- to eight-year-olds' performance in the Heart and Flower task: Emerging proactive cognitive control.
    Roebers CM
    Front Psychol; 2022; 13():923615. PubMed ID: 36033019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural mechanisms of proactive and reactive cognitive control in social anxiety.
    Schmid PC; Kleiman T; Amodio DM
    Cortex; 2015 Sep; 70():137-45. PubMed ID: 26166457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meta-analysis of Functional Neuroimaging of Major Depressive Disorder in Youth.
    Miller CH; Hamilton JP; Sacchet MD; Gotlib IH
    JAMA Psychiatry; 2015 Oct; 72(10):1045-53. PubMed ID: 26332700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptiveness in proactive control engagement in children and adults.
    Chevalier N; Meaney JA; Traut HJ; Munakata Y
    Dev Cogn Neurosci; 2020 Dec; 46():100870. PubMed ID: 33120165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task context load induces reactive cognitive control: An fMRI study on cortical and brain stem activity.
    Mäki-Marttunen V; Hagen T; Espeseth T
    Cogn Affect Behav Neurosci; 2019 Aug; 19(4):945-965. PubMed ID: 30659515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prefrontal Engagement and Reduced Default Network Suppression Co-occur and Are Dynamically Coupled in Older Adults: The Default-Executive Coupling Hypothesis of Aging.
    Turner GR; Spreng RN
    J Cogn Neurosci; 2015 Dec; 27(12):2462-76. PubMed ID: 26351864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bilingual language network: Differential involvement of anterior cingulate, basal ganglia and prefrontal cortex in preparation, monitoring, and execution.
    Seo R; Stocco A; Prat CS
    Neuroimage; 2018 Jul; 174():44-56. PubMed ID: 29486320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of developmental differences in risk estimation and feedback processing.
    van Leijenhorst L; Crone EA; Bunge SA
    Neuropsychologia; 2006; 44(11):2158-70. PubMed ID: 16574168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does verbal labeling influence age differences in proactive and reactive cognitive control?
    Kray J; Schmitt H; Heintz S; Blaye A
    Dev Psychol; 2015 Mar; 51(3):378-91. PubMed ID: 25706593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development.
    van Duijvenvoorde AC; Zanolie K; Rombouts SA; Raijmakers ME; Crone EA
    J Neurosci; 2008 Sep; 28(38):9495-503. PubMed ID: 18799681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in working memory influence the transition from reactive to proactive cognitive control during childhood.
    Troller-Renfree SV; Buzzell GA; Fox NA
    Dev Sci; 2020 Nov; 23(6):e12959. PubMed ID: 32141641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The typical development of posterior medial frontal cortex function and connectivity during task control demands in youth 8-19years old.
    Liu Y; Angstadt M; Taylor SF; Fitzgerald KD
    Neuroimage; 2016 Aug; 137():97-106. PubMed ID: 27173761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attenuated prefrontal and temporal neural activity during working memory as a potential biomarker of suicidal ideation in veterans with PTSD.
    Bomyea J; Stout DM; Simmons AN
    J Affect Disord; 2019 Oct; 257():607-614. PubMed ID: 31349177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perceptual biases during cued task switching relate to decision process differences between children and adults.
    Martinez JE; Mack ML; Bauer JR; Roe MA; Church JA
    J Exp Psychol Hum Percept Perform; 2018 Oct; 44(10):1603-1618. PubMed ID: 30024226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered Neural Efficiency of Decision Making During Temporal Reward Discounting in Anorexia Nervosa.
    King JA; Geisler D; Bernardoni F; Ritschel F; Böhm I; Seidel M; Mennigen E; Ripke S; Smolka MN; Roessner V; Ehrlich S
    J Am Acad Child Adolesc Psychiatry; 2016 Nov; 55(11):972-979. PubMed ID: 27806865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast Neural Dynamics of Proactive Cognitive Control in a Task-Switching Analogue of the Wisconsin Card Sorting Test.
    Gema Díaz-Blancat ; Juan García-Prieto ; Fernando Maestú ; Francisco Barceló
    Brain Topogr; 2018 May; 31(3):407-418. PubMed ID: 29124546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.