These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33009653)

  • 21. Proactive Versus Reactive Control Strategies Differentially Mediate Alcohol Drinking in Male Wistars and P Rats.
    Morningstar MD; Timme NM; Ma B; Cornwell E; Galbari T; Lapish CC
    eNeuro; 2024 Mar; 11(3):. PubMed ID: 38423790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural correlates of impaired self-awareness of apathy, disinhibition and dysexecutive deficits in cocaine-dependent individuals.
    Moreno-López L; Albein-Urios N; Martínez-González JM; Soriano-Mas C; Verdejo-García A
    Addict Biol; 2017 Sep; 22(5):1438-1448. PubMed ID: 27397847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ocular signatures of proactive versus reactive cognitive control in young adults.
    Mäki-Marttunen V; Hagen T; Aminihajibashi S; Foldal M; Stavrinou M; Halvorsen JH; Laeng B; Espeseth T
    Cogn Affect Behav Neurosci; 2018 Oct; 18(5):1049-1063. PubMed ID: 29992484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trait impulsivity components correlate differently with proactive and reactive control.
    Huang S; Zhu Z; Zhang W; Chen Y; Zhen S
    PLoS One; 2017; 12(4):e0176102. PubMed ID: 28423021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selection requirements during verb generation: differential recruitment in older and younger adults.
    Persson J; Sylvester CY; Nelson JK; Welsh KM; Jonides J; Reuter-Lorenz PA
    Neuroimage; 2004 Dec; 23(4):1382-90. PubMed ID: 15589102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Context-dependent modulation of cognitive control involves different temporal profiles of fronto-parietal activity.
    Aben B; Calderon CB; Van der Cruyssen L; Picksak D; Van den Bussche E; Verguts T
    Neuroimage; 2019 Apr; 189():755-762. PubMed ID: 30735827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dorsal anterior cingulate and ventromedial prefrontal cortex have inverse roles in both foraging and economic choice.
    Shenhav A; Straccia MA; Botvinick MM; Cohen JD
    Cogn Affect Behav Neurosci; 2016 Dec; 16(6):1127-1139. PubMed ID: 27580609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developmental improvements in voluntary control of behavior: effect of preparation in the fronto-parietal network?
    Alahyane N; Brien DC; Coe BC; Stroman PW; Munoz DP
    Neuroimage; 2014 Sep; 98():103-17. PubMed ID: 24642280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Less Is More Activation: The Involvement of the Lateral Prefrontal Regions in a "Less Is More" Task.
    Moriguchi Y; Shinohara I
    Dev Neuropsychol; 2019; 44(3):273-281. PubMed ID: 31014122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proactive and reactive cognitive control rely on flexible use of the ventrolateral prefrontal cortex.
    Ryman SG; El Shaikh AA; Shaff NA; Hanlon FM; Dodd AB; Wertz CJ; Ling JM; Barch DM; Stromberg SF; Lin DS; Abrams S; Mayer AR
    Hum Brain Mapp; 2019 Feb; 40(3):955-966. PubMed ID: 30407681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immediate versus delayed control demands elicit distinct mechanisms for instantiating proactive control.
    Janowich JR; Cavanagh JF
    Cogn Affect Behav Neurosci; 2019 Aug; 19(4):910-926. PubMed ID: 30607833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A developmental fMRI study of self-regulatory control in Tourette's syndrome.
    Marsh R; Zhu H; Wang Z; Skudlarski P; Peterson BS
    Am J Psychiatry; 2007 Jun; 164(6):955-66. PubMed ID: 17541057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Executive function in obesity and anorexia nervosa: Opposite ends of a spectrum of disordered feeding behaviour?
    Foldi CJ; Morris MJ; Oldfield BJ
    Prog Neuropsychopharmacol Biol Psychiatry; 2021 Dec; 111():110395. PubMed ID: 34217755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age related prefrontal compensatory mechanisms for inhibitory control in the antisaccade task.
    Fernandez-Ruiz J; Peltsch A; Alahyane N; Brien DC; Coe BC; Garcia A; Munoz DP
    Neuroimage; 2018 Jan; 165():92-101. PubMed ID: 28988829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural substrates of the development of cognitive control in children ages 5-10 years.
    Sheridan M; Kharitonova M; Martin RE; Chatterjee A; Gabrieli JD
    J Cogn Neurosci; 2014 Aug; 26(8):1840-50. PubMed ID: 24650280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using language to get ready: Familiar labels help children engage proactive control.
    Doebel S; Dickerson JP; Hoover JD; Munakata Y
    J Exp Child Psychol; 2018 Feb; 166():147-159. PubMed ID: 28898678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain oscillations in cognitive control: A cross-sectional study with a spatial stroop task.
    Tafuro A; Ambrosini E; Puccioni O; Vallesi A
    Neuropsychologia; 2019 Oct; 133():107190. PubMed ID: 31513806
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The neural bases of proactive and reactive control processes in normal aging.
    Manard M; François S; Phillips C; Salmon E; Collette F
    Behav Brain Res; 2017 Mar; 320():504-516. PubMed ID: 27784627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuro-Cognitive Effects of Acute Tyrosine Administration on Reactive and Proactive Response Inhibition in Healthy Older Adults.
    Bloemendaal M; Froböse MI; Wegman J; Zandbelt BB; van de Rest O; Cools R; Aarts E
    eNeuro; 2018; 5(2):. PubMed ID: 30094335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prefrontal reinstatement of contextual task demand is predicted by separable hippocampal patterns.
    Jiang J; Wang SF; Guo W; Fernandez C; Wagner AD
    Nat Commun; 2020 Apr; 11(1):2053. PubMed ID: 32345979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.