BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33009678)

  • 1. Intraspecific variation and energy channel coupling within a Chilean kelp forest.
    Elliott Smith EA; Harrod C; Docmac F; Newsome SD
    Ecology; 2021 Jan; 102(1):e03198. PubMed ID: 33009678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Habitat coupling writ large: pelagic-derived materials fuel benthivorous macroalgal reef fishes in an upwelling zone.
    Docmac F; Araya M; Hinojosa IA; Dorador C; Harrod C
    Ecology; 2017 Sep; 98(9):2267-2272. PubMed ID: 28632943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River.
    Delong MD; Thorp JH
    Oecologia; 2006 Feb; 147(1):76-85. PubMed ID: 16170563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benthic primary producers are key to sustain the Wadden Sea food web: stable carbon isotope analysis at landscape scale.
    Christianen MJA; Middelburg JJ; Holthuijsen SJ; Jouta J; Compton TJ; van der Heide T; Piersma T; Sinninghe Damsté JS; van der Veer HW; Schouten S; Olff H
    Ecology; 2017 Jun; 98(6):1498-1512. PubMed ID: 28369845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs.
    Arimitsu ML; Hobson KA; Webber DN; Piatt JF; Hood EW; Fellman JB
    Glob Chang Biol; 2018 Jan; 24(1):387-398. PubMed ID: 28833910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of terrigenous and marine organic matter flow into a eutrophic semi-enclosed bay by δ
    Arbi I; Liu S; Zhang J; Wu Y; Huang X
    Sci Total Environ; 2018 Feb; 613-614():847-860. PubMed ID: 28942318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating contributions of pelagic and benthic pathways to consumer production in coupled marine food webs.
    Duffill Telsnig JI; Jennings S; Mill AC; Walker ND; Parnell AC; Polunin NVC
    J Anim Ecol; 2019 Mar; 88(3):405-415. PubMed ID: 30548858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating temporally dynamic baselines in isotopic mixing models.
    Woodland RJ; Rodríguez MA; Magnan P; Glémet H; Cabana G
    Ecology; 2012 Jan; 93(1):131-44. PubMed ID: 22486094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nearshore energy subsidies support Lake Michigan fishes and invertebrates following major changes in food web structure.
    Turschak BA; Bunnell D; Czesny S; Höök TO; Janssen J; Warner D; Bootsma HA
    Ecology; 2014 May; 95(5):1243-52. PubMed ID: 25000756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delineating the food web structure in an Indian estuary during tropical winter employing stable isotope signatures and mixing model.
    Lal DM; Sreekanth GB; Soman C; Sharma A; Abidi ZJ
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):49412-49434. PubMed ID: 36773262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river.
    Thorp JH; Delong MD; Greenwood KS; Casper AF
    Oecologia; 1998 Dec; 117(4):551-563. PubMed ID: 28307681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trophic structure of a coastal fish community determined with diet and stable isotope analyses.
    Malek AJ; Collie JS; Taylor DL
    J Fish Biol; 2016 Sep; 89(3):1513-36. PubMed ID: 27406117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotopic niche (δ¹³С and δ¹⁵N values) of soil macrofauna in temperate forests.
    Korobushkin DI; Gongalsky KB; Tiunov AV
    Rapid Commun Mass Spectrom; 2014 Jun; 28(11):1303-11. PubMed ID: 24760571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of trophic niche compression: Evidence from landscape disturbance.
    Burdon FJ; McIntosh AR; Harding JS
    J Anim Ecol; 2020 Mar; 89(3):730-744. PubMed ID: 31691281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal patterns in stable isotope composition of a benthic intertidal food web reveal limited influence from salt marsh vegetation and green tide.
    Sturbois A; Riera P; Desroy N; Brébant T; Carpentier A; Ponsero A; Schaal G
    Mar Environ Res; 2022 Mar; 175():105572. PubMed ID: 35134641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability of higher trophic level stable isotope data in space and time--a case study in a marine ecosystem.
    Quillfeldt P; Ekschmitt K; Brickle P; McGill RA; Wolters V; Dehnhard N; Masello JF
    Rapid Commun Mass Spectrom; 2015 Apr; 29(7):667-74. PubMed ID: 26212285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the feeding range of a mobile consumer in a river-flood plain system using δ(13)C gradients and parasites.
    Bertrand M; Cabana G; Marcogliese DJ; Magnan P
    J Anim Ecol; 2011 Nov; 80(6):1313-23. PubMed ID: 21615402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal variation in environmental features and elemental/isotopic composition of organic matter sources and primary producers in the Yundang Lagoon (Xiamen, China).
    Zheng X; Como S; Magni P; Huang L
    Environ Sci Pollut Res Int; 2019 May; 26(13):13126-13137. PubMed ID: 30900126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish.
    Le Croizier G; Schaal G; Point D; Le Loc'h F; Machu E; Fall M; Munaron JM; Boyé A; Walter P; Laë R; Tito De Morais L
    Sci Total Environ; 2019 Feb; 650(Pt 2):2129-2140. PubMed ID: 30290354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can amino acid carbon isotope ratios distinguish primary producers in a mangrove ecosystem?
    Larsen T; Wooller MJ; Fogel ML; O'Brien DM
    Rapid Commun Mass Spectrom; 2012 Jul; 26(13):1541-8. PubMed ID: 22638971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.