BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33010131)

  • 1. Highly selective sensor for the detection of Hg
    Rotake DR; Kumar A; Darji AD; Singh J
    IET Nanobiotechnol; 2020 Sep; 14(7):563-573. PubMed ID: 33010131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligonucleotide-functionalized gold nanoparticles-enhanced QCM-D sensor for mercury(II) ions with high sensitivity and tunable dynamic range.
    Chen Q; Wu X; Wang D; Tang W; Li N; Liu F
    Analyst; 2011 Jun; 136(12):2572-7. PubMed ID: 21776617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategic Approaches for Highly Selective and Sensitive Detection of Hg
    Park HJ; Lee SS
    Anal Sci; 2019 Aug; 35(8):883-888. PubMed ID: 31006718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu(II) ions.
    Jin Y; Huang Y; Liu G; Zhao R
    Analyst; 2013 Sep; 138(18):5479-85. PubMed ID: 23888301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creating gold nanoprisms directly on quartz crystal microbalance electrodes for mercury vapor sensing.
    Sabri YM; Ippolito SJ; O'Mullane AP; Tardio J; Bansal V; Bhargava SK
    Nanotechnology; 2011 Jul; 22(30):305501. PubMed ID: 21719970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for detection of Hg2+ based on the specific thymine-Hg2+-thymine interaction in the DNA hybridization on the surface of quartz crystal microbalance.
    Sheng Z; Han J; Zhang J; Zhao H; Jiang L
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):289-92. PubMed ID: 21700432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theophylline quartz crystal microbalance biosensor based on recognition of RNA aptamer and amplification of signal.
    Dong ZM; Zhao GC
    Analyst; 2013 Apr; 138(8):2456-62. PubMed ID: 23467569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of gliadin in foods using a quartz crystal microbalance biosensor that incorporates gold nanoparticles.
    Chu PT; Lin CS; Chen WJ; Chen CF; Wen HW
    J Agric Food Chem; 2012 Jul; 60(26):6483-92. PubMed ID: 22694361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective antibodies immobilization and functionalized nanoparticles in a quartz-crystal microbalance-based immunosensor for the detection of parathion.
    Della Ventura B; Iannaccone M; Funari R; Pica Ciamarra M; Altucci C; Capparelli R; Roperto S; Velotta R
    PLoS One; 2017; 12(2):e0171754. PubMed ID: 28182720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quartz crystal microbalance for telomerase sensing based on gold nanoparticle induced signal amplification.
    Yang H; Li Y; Wang D; Liu Y; Wei W; Zhang Y; Liu S; Li P
    Chem Commun (Camb); 2019 May; 55(43):5994-5997. PubMed ID: 31049531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.
    Kabir KM; Sabri YM; Esmaielzadeh Kandjani A; Matthews GI; Field M; Jones LA; Nafady A; Ippolito SJ; Bhargava SK
    Langmuir; 2015 Aug; 31(30):8519-29. PubMed ID: 26169072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive and selective detection of Pb2+ ions using a novel and simple DNAzyme-based quartz crystal microbalance with dissipation biosensor.
    Teh HB; Li H; Yau Li SF
    Analyst; 2014 Oct; 139(20):5170-5. PubMed ID: 25118337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of a molecularly imprinted sensor based on quartz crystal microbalance for specific recognition of sialic acid in human urine.
    Qiu X; Xu XY; Chen X; Wu Y; Guo H
    Anal Bioanal Chem; 2018 Jul; 410(18):4387-4395. PubMed ID: 29736700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An aptamer-based quartz crystal microbalance biosensor for sensitive and selective detection of leukemia cells using silver-enhanced gold nanoparticle label.
    Shan W; Pan Y; Fang H; Guo M; Nie Z; Huang Y; Yao S
    Talanta; 2014 Aug; 126():130-5. PubMed ID: 24881543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual detection of nitrate and mercury in water using disposable electrochemical sensors.
    Bui MN; Brockgreitens J; Ahmed S; Abbas A
    Biosens Bioelectron; 2016 Nov; 85():280-286. PubMed ID: 27183277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification.
    Salam F; Uludag Y; Tothill IE
    Talanta; 2013 Oct; 115():761-7. PubMed ID: 24054660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel metal-organic frameworks composite-based label-free point-of-care quartz crystal microbalance aptasensing platform for tetracycline detection.
    Yang Y; Yang L; Ma Y; Wang X; Zhang J; Bai B; Yu L; Guo C; Zhang F; Qin S
    Food Chem; 2022 Oct; 392():133302. PubMed ID: 35636180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of electrodeposited gold nanostructures for applications in QCM sensing.
    Terao K; Kakita C; Nagase N; Miyanishi N; Suzuki T; Takao H; Shimokawa F; Oohira F
    Anal Sci; 2012; 28(3):291-4. PubMed ID: 22451370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecularly imprinted nanofilm-based quartz crystal microbalance sensor for the real-time detection of pirimicarb.
    Cakir O
    J Mol Recognit; 2019 Sep; 32(9):e2785. PubMed ID: 31033053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small organic molecules detection based on aptamer-modified gold nanoparticles-enhanced quartz crystal microbalance with dissipation biosensor.
    Zheng B; Cheng S; Liu W; Lam MH; Liang H
    Anal Biochem; 2013 Jul; 438(2):144-9. PubMed ID: 23583908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.