These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33010275)

  • 1. Multiplex genetic engineering improves endogenous expression of mesophilic α-amylase gene in a wild strain Bacillus amyloliquefaciens 205.
    Zhao X; Zheng H; Zhen J; Shu W; Yang S; Xu J; Song H; Ma Y
    Int J Biol Macromol; 2020 Dec; 165(Pt A):609-618. PubMed ID: 33010275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and application of a fast and efficient CRISPR-based genetic toolkit in Bacillus amyloliquefaciens LB1ba02.
    Xin Q; Chen Y; Chen Q; Wang B; Pan L
    Microb Cell Fact; 2022 May; 21(1):99. PubMed ID: 35643496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of an endogenous raw starch digesting mesophilic α-amylase gene in Bacillus amyloliquefaciens Z3 by in vitro methylation protocol.
    Tang S; Xu T; Peng J; Zhou K; Zhu Y; Zhou W; Cheng H; Zhou H
    J Sci Food Agric; 2020 May; 100(7):3013-3023. PubMed ID: 32056215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic manipulation of Bacillus amyloliquefaciens.
    Vehmaanperä J; Steinborn G; Hofemeister J
    J Biotechnol; 1991 Jul; 19(2-3):221-40. PubMed ID: 1367238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and application of a CRISPR-dCpf1 assisted multiplex gene regulation system in Bacillus amyloliquefaciens LB1ba02.
    Xin Q; Wang B; Pan L
    Microbiol Res; 2022 Oct; 263():127131. PubMed ID: 35868259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 8. Molecular cloning of alpha-amylase gene from Bacillus amyloliquefaciens and its expression in B. subtilis.
    Palva I
    Gene; 1982; 19(1):81-7. PubMed ID: 6183169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/dCas9-Mediated Multiplex Gene Repression in Streptomyces.
    Zhao Y; Li L; Zheng G; Jiang W; Deng Z; Wang Z; Lu Y
    Biotechnol J; 2018 Sep; 13(9):e1800121. PubMed ID: 29862648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cloning the alpha-amylase gene of Bacillus amyloliquefaciens in cyanobacteria cells].
    Elanskaia IV; Morzunova IB
    Mol Gen Mikrobiol Virusol; 1989 Sep; (9):7-11. PubMed ID: 2515431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing the cell lysis to enhance yield of acid-stable alpha amylase by deletion of multiple peptidoglycan hydrolase-related genes in Bacillus amyloliquefaciens.
    Zhang J; Xu X; Li X; Chen X; Zhou C; Liu Y; Li Y; Lu F
    Int J Biol Macromol; 2021 Jan; 167():777-786. PubMed ID: 33278447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis of the promoter region of the Bacillus subtilis alpha-amylase gene.
    Weickert MJ; Chambliss GH
    J Bacteriol; 1989 Jul; 171(7):3656-66. PubMed ID: 2500416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient gene expression of a fibrinolytic enzyme (subtilisin DFE) in Bacillus subtilis mediated by the promoter of alpha-amylase gene from Bacillus amyloliquefaciens.
    Xiao L; Zhang RH; Peng Y; Zhang YZ
    Biotechnol Lett; 2004 Sep; 26(17):1365-9. PubMed ID: 15604765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the inverted repeat structure on the production of the cloned Bacillus amyloliquefaciens alpha-amylase.
    Kallio P
    Eur J Biochem; 1986 Aug; 158(3):491-5. PubMed ID: 3488213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a 2.2-kb operon preceding the alpha-amylase gene of Bacillus amyloliquefaciens.
    Kallio P; Ulmanen I; Palva I
    Eur J Biochem; 1986 Aug; 158(3):497-504. PubMed ID: 3488214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization and partial characterization of ca-independent α-amylase from Bacillus amyloliquefaciens BH1.
    Du R; Zhao F; Qiao X; Song Q; Ye G; Wang Y; Wang B; Han Y; Zhou Z
    Prep Biochem Biotechnol; 2018; 48(8):768-774. PubMed ID: 30303444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Bacillus amyloliquefaciens as a high-level recombinant protein expression system.
    Wang H; Zhang X; Qiu J; Wang K; Meng K; Luo H; Su X; Ma R; Huang H; Yao B
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):113-123. PubMed ID: 30406346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of a cis-acting mutation conferring catabolite repression resistance to alpha-amylase synthesis in Bacillus subtilis.
    Nicholson WL; Chambliss GH
    J Bacteriol; 1985 Mar; 161(3):875-81. PubMed ID: 3918991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.