BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 33010618)

  • 1. DOKI: Domain knowledge-driven inference method for reverse-engineering transcriptional regulatory relationships among genes in cancer.
    Adabor ES; Acquaah-Mensah GK
    Comput Biol Med; 2020 Oct; 125():104017. PubMed ID: 33010618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restricted-derestricted dynamic Bayesian Network inference of transcriptional regulatory relationships among genes in cancer.
    Adabor ES; Acquaah-Mensah GK
    Comput Biol Chem; 2019 Apr; 79():155-164. PubMed ID: 30822674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain in situ hybridization maps as a source for reverse-engineering transcriptional regulatory networks: Alzheimer's disease insights.
    Acquaah-Mensah GK; Taylor RC
    Gene; 2016 Jul; 586(1):77-86. PubMed ID: 27050105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpreting transcriptional changes using causal graphs: new methods and their practical utility on public networks.
    Fakhry CT; Choudhary P; Gutteridge A; Sidders B; Chen P; Ziemek D; Zarringhalam K
    BMC Bioinformatics; 2016 Aug; 17(1):318. PubMed ID: 27553489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large scale gene regulatory network inference with a multi-level strategy.
    Wu J; Zhao X; Lin Z; Shao Z
    Mol Biosyst; 2016 Feb; 12(2):588-97. PubMed ID: 26687446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.
    Adabor ES; Acquaah-Mensah GK; Oduro FT
    J Biomed Inform; 2015 Feb; 53():27-35. PubMed ID: 25181467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEAK: Integrating Curated and Noisy Prior Knowledge in Gene Regulatory Network Inference.
    Altarawy D; Eid FE; Heath LS
    J Comput Biol; 2017 Sep; 24(9):863-873. PubMed ID: 28294630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional master regulator analysis in breast cancer genetic networks.
    Tovar H; García-Herrera R; Espinal-Enríquez J; Hernández-Lemus E
    Comput Biol Chem; 2015 Dec; 59 Pt B():67-77. PubMed ID: 26362298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Overview of NCA-Based Algorithms for Transcriptional Regulatory Network Inference.
    Wang X; Alshawaqfeh M; Dang X; Wajid B; Noor A; Qaraqe M; Serpedin E
    Microarrays (Basel); 2015 Nov; 4(4):596-617. PubMed ID: 27600242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient proximal gradient algorithm for inference of differential gene networks.
    Wang C; Gao F; Giannakis GB; D'Urso G; Cai X
    BMC Bioinformatics; 2019 May; 20(1):224. PubMed ID: 31046666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid framework for reverse engineering of robust Gene Regulatory Networks.
    Jafari M; Ghavami B; Sattari V
    Artif Intell Med; 2017 Jun; 79():15-27. PubMed ID: 28602483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid method inference for the construction of cooperative regulatory network in human.
    Chebil I; Nicolle R; Santini G; Rouveirol C; Elati M
    IEEE Trans Nanobioscience; 2014 Jun; 13(2):97-103. PubMed ID: 24771593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated inference of gene regulatory networks using explicit regulatory modules.
    Réda C; Wilczyński B
    J Theor Biol; 2020 Feb; 486():110091. PubMed ID: 31790679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ModularBoost: an efficient network inference algorithm based on module decomposition.
    Li X; Zhang W; Zhang J; Li G
    BMC Bioinformatics; 2021 Mar; 22(1):153. PubMed ID: 33761871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting miRNA Targets by Integrating Gene Regulatory Knowledge with Expression Profiles.
    Zhang W; Le TD; Liu L; Zhou ZH; Li J
    PLoS One; 2016; 11(4):e0152860. PubMed ID: 27064982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional network inference from functional similarity and expression data: a global supervised approach.
    Ambroise J; Robert A; Macq B; Gala JL
    Stat Appl Genet Mol Biol; 2012 Jan; 11(1):Article 2. PubMed ID: 22499684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A posterior probability approach for gene regulatory network inference in genetic perturbation data.
    Young WC; Raftery AE; Yeung KY
    Math Biosci Eng; 2016 Dec; 13(6):1241-1251. PubMed ID: 27775378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.