These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 33010675)
1. Effect of heavy metal-induced stress on two extremophilic microbial communities from Caviahue-Copahue, Argentina. Massello FL; Donati E Environ Pollut; 2021 Jan; 268(Pt B):115709. PubMed ID: 33010675 [TBL] [Abstract][Full Text] [Related]
2. Enrichment and isolation of acid-tolerant sulfate-reducing microorganisms in the anoxic, acidic hot spring sediments from Copahue volcano, Argentina. Willis G; Nancucheo I; Hedrich S; Giaveno A; Donati E; Johnson DB FEMS Microbiol Ecol; 2019 Dec; 95(12):. PubMed ID: 31665270 [TBL] [Abstract][Full Text] [Related]
3. Bioprospecting of Extremophilic Microorganisms to Address Environmental Pollution. Gallo G; Aulitto M; Contursi P; Limauro D; Bartolucci S; Fiorentino G J Vis Exp; 2021 Dec; (178):. PubMed ID: 35037656 [TBL] [Abstract][Full Text] [Related]
4. Heavy metal capture by autochthonous yeasts from a volcanic influenced environment of Patagonia. Russo G; Libkind D; Giraudo MR; Delgado OD J Basic Microbiol; 2016 Nov; 56(11):1203-1211. PubMed ID: 27427287 [TBL] [Abstract][Full Text] [Related]
5. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826 [TBL] [Abstract][Full Text] [Related]
6. A Deeper Look into the Biodiversity of the Extremely Acidic Copahue volcano-Río Agrio System in Neuquén, Argentina. Lopez Bedogni G; Massello FL; Giaveno A; Donati ER; Urbieta MS Microorganisms; 2019 Dec; 8(1):. PubMed ID: 31905732 [TBL] [Abstract][Full Text] [Related]
7. Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals. Sun J; He X; LE Y; Al-Tohamy R; Ali SS J Environ Manage; 2024 Feb; 352():120081. PubMed ID: 38237330 [TBL] [Abstract][Full Text] [Related]
8. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Yin H; Niu J; Ren Y; Cong J; Zhang X; Fan F; Xiao Y; Zhang X; Deng J; Xie M; He Z; Zhou J; Liang Y; Liu X Sci Rep; 2015 Sep; 5():14266. PubMed ID: 26391875 [TBL] [Abstract][Full Text] [Related]
9. Archaeal and bacterial diversity in five different hydrothermal ponds in the Copahue region in Argentina. Sofía Urbieta M; Toril EG; Alejandra Giaveno M; Bazán AA; Donati ER Syst Appl Microbiol; 2014 Sep; 37(6):429-41. PubMed ID: 25066825 [TBL] [Abstract][Full Text] [Related]
10. [Effects of Heavy Metal Pollution on the Structure of Microbial Communities in Different Habitats]. He YF; Xiao XZ; Wang JW Huan Jing Ke Xue; 2023 Apr; 44(4):2103-2112. PubMed ID: 37040960 [TBL] [Abstract][Full Text] [Related]
11. The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Lin Y; Ye Y; Hu Y; Shi H Ecotoxicol Environ Saf; 2019 Sep; 180():557-564. PubMed ID: 31128554 [TBL] [Abstract][Full Text] [Related]
12. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination. Li X; Meng D; Li J; Yin H; Liu H; Liu X; Cheng C; Xiao Y; Liu Z; Yan M Environ Pollut; 2017 Dec; 231(Pt 1):908-917. PubMed ID: 28886536 [TBL] [Abstract][Full Text] [Related]
13. Arsenic-tolerant microbial consortia from sediments of Copahue geothermal system with potential applications in bioremediation. Lima MA; Urbieta MS; Donati E J Basic Microbiol; 2019 Jul; 59(7):680-691. PubMed ID: 30997929 [TBL] [Abstract][Full Text] [Related]
14. Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations. Zampieri Bdel B; Pinto AB; Schultz L; de Oliveira MA; de Oliveira AJ Microb Ecol; 2016 Oct; 72(3):582-94. PubMed ID: 27480227 [TBL] [Abstract][Full Text] [Related]
15. Meta-Analysis of Microbial Communities in Hot Springs: Recurrent Taxa and Complex Shaping Factors beyond pH and Temperature. Massello FL; Chan CS; Chan KG; Goh KM; Donati E; Urbieta MS Microorganisms; 2020 Jun; 8(6):. PubMed ID: 32560103 [TBL] [Abstract][Full Text] [Related]
16. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Guo H; Nasir M; Lv J; Dai Y; Gao J Ecotoxicol Environ Saf; 2017 Oct; 144():300-306. PubMed ID: 28645031 [TBL] [Abstract][Full Text] [Related]
17. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy. Rizvi A; Ahmed B; Zaidi A; Khan MS Environ Monit Assess; 2020 Dec; 192(12):801. PubMed ID: 33263175 [TBL] [Abstract][Full Text] [Related]
19. Effects of co-contamination of heavy metals and total petroleum hydrocarbons on soil bacterial community and function network reconstitution. Li Q; You P; Hu Q; Leng B; Wang J; Chen J; Wan S; Wang B; Yuan C; Zhou R; Ouyang K Ecotoxicol Environ Saf; 2020 Nov; 204():111083. PubMed ID: 32791359 [TBL] [Abstract][Full Text] [Related]
20. Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering. Gallo G; Puopolo R; Carbonaro M; Maresca E; Fiorentino G Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34069056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]