These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 33010703)

  • 1. Micro- and nanotechnology for neural electrode-tissue interfaces.
    Liu S; Zhao Y; Hao W; Zhang XD; Ming D
    Biosens Bioelectron; 2020 Dec; 170():112645. PubMed ID: 33010703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces.
    Heo DN; Song SJ; Kim HJ; Lee YJ; Ko WK; Lee SJ; Lee D; Park SJ; Zhang LG; Kang JY; Do SH; Lee SH; Kwon IK
    Acta Biomater; 2016 Jul; 39():25-33. PubMed ID: 27163406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible and Implantable Microelectrodes for Chronically Stable Neural Interfaces.
    Shi J; Fang Y
    Adv Mater; 2019 Nov; 31(45):e1804895. PubMed ID: 30300442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes.
    Vitale F; Summerson SR; Aazhang B; Kemere C; Pasquali M
    ACS Nano; 2015; 9(4):4465-74. PubMed ID: 25803728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing the neuron-electrode interface for chronic bioelectronic interfacing.
    Keogh C
    Neurosurg Focus; 2020 Jul; 49(1):E7. PubMed ID: 32610294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex.
    Kim DH; Wiler JA; Anderson DJ; Kipke DR; Martin DC
    Acta Biomater; 2010 Jan; 6(1):57-62. PubMed ID: 19651250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces.
    Hassarati RT; Marcal H; John L; Foster R; Green RA
    J Biomed Mater Res B Appl Biomater; 2016 May; 104(4):712-22. PubMed ID: 26248597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conducting polymer coated neural recording electrodes.
    Harris AR; Morgan SJ; Chen J; Kapsa RM; Wallace GG; Paolini AG
    J Neural Eng; 2013 Feb; 10(1):016004. PubMed ID: 23234724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and Characterization of Micro-Nano Electrodes for Implantable BCI.
    Xi Y; Ji B; Guo Z; Li W; Liu J
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30979081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fiber-shaped neural probe with alterable elastic moduli for direct implantation and stable electronic-brain interfaces.
    Tang C; Xie S; Wang M; Feng J; Han Z; Wu X; Wang L; Chen C; Wang J; Jiang L; Chen P; Sun X; Peng H
    J Mater Chem B; 2020 May; 8(20):4387-4394. PubMed ID: 32373848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical and mechanical performance of reduced graphene oxide, conductive hydrogel, and electrodeposited Pt-Ir coated electrodes: an active in vitro study.
    Dalrymple AN; Huynh M; Robles UA; Marroquin JB; Lee CD; Petrossians A; Whalen JJ; Li D; Parkington HC; Forsythe JS; Green RA; Poole-Warren LA; Shepherd RK; Fallon JB
    J Neural Eng; 2019 Dec; 17(1):016015. PubMed ID: 31652427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable, long-term single-neuronal recording from the rat spinal cord with flexible carbon nanotube fiber electrodes.
    Liu X; Xu Z; Fu X; Liu Y; Jia H; Yang Z; Zhang J; Wei S; Duan X
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36108593
    [No Abstract]   [Full Text] [Related]  

  • 15. Improving Deep Brain Stimulation Electrode Performance
    Hyakumura T; Aregueta-Robles U; Duan W; Villalobos J; Adams WK; Poole-Warren L; Fallon JB
    Front Neurosci; 2021; 15():761525. PubMed ID: 34803592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic electrode coatings for next-generation neural interfaces.
    Aregueta-Robles UA; Woolley AJ; Poole-Warren LA; Lovell NH; Green RA
    Front Neuroeng; 2014; 7():15. PubMed ID: 24904405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in conductive hydrogels for neural recording and stimulation.
    Dawit H; Zhao Y; Wang J; Pei R
    Biomater Sci; 2024 May; 12(11):2786-2800. PubMed ID: 38682423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(3,4-Ethylenedioxythiophene)/Functional Gold Nanoparticle films for Improving the Electrode-Neural Interface.
    Wu Y; Wang L; Yan M; Wang X; Liao X; Zhong C; Ke D; Lu Y
    Adv Healthc Mater; 2024 May; ():e2400836. PubMed ID: 38757738
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.