These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33010930)

  • 1. The Cardiac Injury Immune Response as a Target for Regenerative and Cellular Therapies.
    Hume RD; Chong JJH
    Clin Ther; 2020 Oct; 42(10):1923-1943. PubMed ID: 33010930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exosomes derived from dendritic cells improve cardiac function via activation of CD4(+) T lymphocytes after myocardial infarction.
    Liu H; Gao W; Yuan J; Wu C; Yao K; Zhang L; Ma L; Zhu J; Zou Y; Ge J
    J Mol Cell Cardiol; 2016 Feb; 91():123-33. PubMed ID: 26746143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interleukin-10 Deficiency Alters Endothelial Progenitor Cell-Derived Exosome Reparative Effect on Myocardial Repair via Integrin-Linked Kinase Enrichment.
    Yue Y; Wang C; Benedict C; Huang G; Truongcao M; Roy R; Cimini M; Garikipati VNS; Cheng Z; Koch WJ; Kishore R
    Circ Res; 2020 Jan; 126(3):315-329. PubMed ID: 31815595
    [No Abstract]   [Full Text] [Related]  

  • 4. Regenerative approaches to post-myocardial infarction heart failure.
    Martin K; Huang CL; Caplice NM
    Curr Pharm Des; 2014; 20(12):1930-40. PubMed ID: 23844736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Healing the Broken Heart; The Immunomodulatory Effects of Stem Cell Therapy.
    Wagner MJ; Khan M; Mohsin S
    Front Immunol; 2020; 11():639. PubMed ID: 32328072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac CD68+ and stabilin-1+ macrophages in wound healing following myocardial infarction: From experiment to clinic.
    Ryabov V; Gombozhapova A; Rogovskaya Y; Kzhyshkowska J; Rebenkova M; Karpov R
    Immunobiology; 2018; 223(4-5):413-421. PubMed ID: 29179985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting neuro-immune systems to achieve cardiac tissue repair following myocardial infarction: A review of therapeutic approaches from in-vivo preclinical to clinical studies.
    Smith S; Ascione R
    Pharmacol Ther; 2023 May; 245():108397. PubMed ID: 36996910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exosomes in Myocardial Repair: Advances and Challenges in the Development of Next-Generation Therapeutics.
    Adamiak M; Sahoo S
    Mol Ther; 2018 Jul; 26(7):1635-1643. PubMed ID: 29807783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactive scaffolds in stem-cell-based therapies for cardiac repair: protocol for a meta-analysis of randomized controlled preclinical trials in animal myocardial infarction models.
    Khan K; Gasbarrino K; Mahmoud I; Makhoul G; Yu B; Dufresne L; Daskalopoulou SS; Schwertani A; Cecere R
    Syst Rev; 2018 Dec; 7(1):225. PubMed ID: 30518435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uterine-derived progenitor cells are immunoprivileged and effectively improve cardiac regeneration when used for cell therapy.
    Ludke A; Wu J; Nazari M; Hatta K; Shao Z; Li SH; Song H; Ni NC; Weisel RD; Li RK
    J Mol Cell Cardiol; 2015 Jul; 84():116-28. PubMed ID: 25939780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Regulatory Role of T Cell Responses in Cardiac Remodeling Following Myocardial Infarction.
    Kino T; Khan M; Mohsin S
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Reperfusion on Temporal Immune Cell Dynamics After Myocardial Infarction.
    Zhang RYK; Cochran BJ; Thomas SR; Rye KA
    J Am Heart Assoc; 2023 Feb; 12(4):e027600. PubMed ID: 36789837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD8
    Ilatovskaya DV; Pitts C; Clayton J; Domondon M; Troncoso M; Pippin S; DeLeon-Pennell KY
    Am J Physiol Heart Circ Physiol; 2019 Sep; 317(3):H581-H596. PubMed ID: 31322426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction.
    Hofmann U; Frantz S
    Circ Res; 2015 Jan; 116(2):354-67. PubMed ID: 25593279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adult Stem Cell Therapy for Cardiac Repair in Patients After Acute Myocardial Infarction Leading to Ischemic Heart Failure: An Overview of Evidence from the Recent Clinical Trials.
    Katarzyna R
    Curr Cardiol Rev; 2017; 13(3):223-231. PubMed ID: 28464769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell augmentation strategies for cardiac stem cell therapies.
    Cruz-Samperio R; Jordan M; Perriman A
    Stem Cells Transl Med; 2021 Jun; 10(6):855-866. PubMed ID: 33660953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac stem cell therapy to modulate inflammation upon myocardial infarction.
    van den Akker F; Deddens JC; Doevendans PA; Sluijter JP
    Biochim Biophys Acta; 2013 Feb; 1830(2):2449-58. PubMed ID: 22975401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Insights into the Role of Exosomes in the Heart After Myocardial Infarction.
    Li N; Rochette L; Wu Y; Rosenblatt-Velin N
    J Cardiovasc Transl Res; 2019 Feb; 12(1):18-27. PubMed ID: 30173401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesenchymal Stem Cells in Cardiac Repair: Effects on Myocytes, Vasculature, and Fibroblasts.
    White SJ; Chong JJH
    Clin Ther; 2020 Oct; 42(10):1880-1891. PubMed ID: 32938532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune cells drive new immunomodulatory therapies for myocardial infarction: From basic to clinical translation.
    Nian W; Huang Z; Fu C
    Front Immunol; 2023; 14():1097295. PubMed ID: 36761726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.