BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33011246)

  • 1. Simulation of pellet coating in Wurster coaters.
    Norouzi HR
    Int J Pharm; 2020 Nov; 590():119931. PubMed ID: 33011246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CFD-DEM -DDM Model for Spray Coating Process in a Wurster Coater.
    Farivar F; Zhang H; Tian ZF; Gupte A
    J Pharm Sci; 2020 Dec; 109(12):3678-3689. PubMed ID: 33007276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Fluid Dynamics-Discrete Element Method Modeling of an Industrial-Scale Wurster Coater.
    Böhling P; Khinast JG; Jajcevic D; Davies C; Carmody A; Doshi P; Am Ende MT; Sarkar A
    J Pharm Sci; 2019 Jan; 108(1):538-550. PubMed ID: 30339868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of the uniformity of coating thickness of pellets coated with a conventional Wurster chamber and a swirl generator-equipped Wurster chamber.
    Luštrik M; Dreu R; Šibanc R; Srčič S
    Pharm Dev Technol; 2012; 17(3):268-76. PubMed ID: 21073402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the coating layer thickness in a pharmaceutical coating process.
    Madlmeir S; Forgber T; Trogrlic M; Jajcevic D; Kape A; Contreras L; Carmody A; Liu P; Davies C; Sarkar A; Khinast JG
    Eur J Pharm Sci; 2021 Jun; 161():105770. PubMed ID: 33610738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feasibility study on pellet coating using a high-speed quasi-continuous coater.
    Cahyadi C; Koh JJ; Loh ZH; Chan LW; Heng PW
    AAPS PharmSciTech; 2012 Dec; 13(4):1276-86. PubMed ID: 22996671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid-bed coater modifications and study of their influence on the coating process of pellets.
    Dreu R; Luštrik M; Perpar M; Zun I; Srčič S
    Drug Dev Ind Pharm; 2012 Apr; 38(4):501-11. PubMed ID: 21962028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of the fluid dynamics of bottom spray fluid bed coaters.
    Chan LW; Tang ES; Heng PW
    AAPS PharmSciTech; 2006 Apr; 7(2):E37. PubMed ID: 16796355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of swirling airflow to enhance coating performance of bottom spray fluid bed coaters.
    Heng PW; Chan LW; Tang ES
    Int J Pharm; 2006 Dec; 327(1-2):26-35. PubMed ID: 16920294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Modeling of Drying of Pharmaceutical Wet Granules in a Fluidized Bed Dryer Using Coupled CFD-DEM Approach.
    Aziz H; Ahsan SN; De Simone G; Gao Y; Chaudhuri B
    AAPS PharmSciTech; 2022 Jan; 23(1):59. PubMed ID: 35059893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Applicability of the Coarse Grained Coupled CFD-DEM Model to Predict the Heat Transfer During the Fluidized Bed Drying of Pharmaceutical Granules.
    Aziz H; Sansare S; Duran T; Gao Y; Chaudhuri B
    Pharm Res; 2022 Sep; 39(9):1991-2003. PubMed ID: 35986121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of pellet coating uniformity using a computer scanner.
    Šibanc R; Luštrik M; Dreu R
    Int J Pharm; 2017 Nov; 533(2):377-382. PubMed ID: 28606507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drying efficiency and particle movement in coating--impact on particle agglomeration and yield.
    Tang ES; Wang L; Liew CV; Chan LW; Heng PW
    Int J Pharm; 2008 Feb; 350(1-2):172-80. PubMed ID: 17942252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of film coating process in a novel rotating fluidized bed.
    Nakamura H; Iwasaki T; Watano S
    Chem Pharm Bull (Tokyo); 2006 Jun; 54(6):839-46. PubMed ID: 16755055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experiments and numerical modeling to estimate the coating variability in a pan coater.
    Sahni E; Chaudhuri B
    Int J Pharm; 2011 Oct; 418(2):286-96. PubMed ID: 21627984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validating a Numerical Simulation of the ConsiGma(R) Coater.
    Boehling P; Jacevic D; Detobel F; Holman J; Wareham L; Metzger M; Khinast JG
    AAPS PharmSciTech; 2020 Nov; 22(1):10. PubMed ID: 33244725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of large-scale tablet coating: Modeling, simulation and experiments.
    Boehling P; Toschkoff G; Knop K; Kleinebudde P; Just S; Funke A; Rehbaum H; Khinast JG
    Eur J Pharm Sci; 2016 Jul; 90():14-24. PubMed ID: 26709079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.
    Milenkovic J; Alexopoulos AH; Kiparissides C
    Int J Pharm; 2014 Jan; 461(1-2):129-36. PubMed ID: 24296048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.