These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33011480)

  • 1. Electrochemical regeneration of spent activated carbon from drinking water treatment plant at different scale reactors.
    Ferrández-Gómez B; Ruiz-Rosas R; Beaumont S; Cazorla-Amorós D; Morallón E
    Chemosphere; 2021 Feb; 264(Pt 1):128399. PubMed ID: 33011480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of two typical regeneration methods to the spent biological activated carbon in drinking water.
    Liu C; Li C; Shan Y; Sun Z; Chen W
    Environ Sci Pollut Res Int; 2020 May; 27(14):16404-16414. PubMed ID: 32124306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergy optimization for the removal of dye and pesticides from drinking water using granular activated carbon particles in a 3D electrochemical reactor.
    Ghanbarlou H; Pedersen NL; Nikbakht Fini M; Muff J
    Environ Sci Pollut Res Int; 2020 Jun; 27(18):22206-22213. PubMed ID: 32086734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfluoroalkyl substances (PFAS) adsorption in drinking water by granular activated carbon: Influence of activated carbon and PFAS characteristics.
    Cantoni B; Turolla A; Wellmitz J; Ruhl AS; Antonelli M
    Sci Total Environ; 2021 Nov; 795():148821. PubMed ID: 34252781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regeneration of Activated Carbon Fiber by the Electro-Fenton Process.
    Trellu C; Oturan N; Keita FK; Fourdrin C; Pechaud Y; Oturan MA
    Environ Sci Technol; 2018 Jul; 52(13):7450-7457. PubMed ID: 29856620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenol adsorption by activated carbon produced from spent coffee grounds.
    Castro CS; Abreu AL; Silva CL; Guerreiro MC
    Water Sci Technol; 2011; 64(10):2059-65. PubMed ID: 22105129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical in situ regeneration of granular activated carbon using a three-dimensional reactor.
    Sun H; Liu Z; Wang Y; Li Y
    J Environ Sci (China); 2013 Dec; 25 Suppl 1():S77-9. PubMed ID: 25078844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation, adsorptive properties and chemical regeneration studies of high-porous activated carbon derived from Platanus orientalis leaves for Cr(VI) removal.
    Liu X; Huang L; Wang L; Wang C; Wu X; Dong G; Liu Y
    J Water Health; 2018 Oct; 16(5):814-826. PubMed ID: 30285962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced removal of 8-quinolinecarboxylic acid in an activated carbon cloth by electroadsorption in aqueous solution.
    López-Bernabeu S; Ruiz-Rosas R; Quijada C; Montilla F; Morallón E
    Chemosphere; 2016 Feb; 144():982-8. PubMed ID: 26433936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor.
    Zhou M; Lei L
    Chemosphere; 2006 Nov; 65(7):1197-203. PubMed ID: 16682066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of ciprofloxacin adsorption and regeneration of activated carbon prepared from Enteromorpha prolifera impregnated with H
    Wang M; Li G; Huang L; Xue J; Liu Q; Bao N; Huang J
    Ecotoxicol Environ Saf; 2017 May; 139():36-42. PubMed ID: 28109901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical regeneration of field spent GAC from two water treatment plants.
    Narbaitz RM; McEwen J
    Water Res; 2012 Oct; 46(15):4852-60. PubMed ID: 22749905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Removal of Humic Acid from Water Using Pt/biochar Electrode Reactor].
    Ding WC; Xiang XG; Zeng XL; Li XY; Liang GQ; M M M
    Huan Jing Ke Xue; 2016 Aug; 37(8):3073-3078. PubMed ID: 29964734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of reactor configuration on the kinetics and nitrogen byproduct selectivity of urea electrolysis using a boron doped diamond electrode.
    Schranck A; Doudrick K
    Water Res; 2020 Jan; 168():115130. PubMed ID: 31606555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of electrochemical oxidation process as post-treatment for the effluents of a UASB reactor treating cellulose pulp mill wastewater.
    Buzzini AP; Miwa DW; Motheo AJ; Pires EC
    Water Sci Technol; 2006; 54(2):207-13. PubMed ID: 16939104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated carbon adsorptive removal of azo dye and peroxydisulfate regeneration: from a batch study to continuous column operation.
    Li J; Du Y; Deng B; Zhu K; Zhang H
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4932-4941. PubMed ID: 27988904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency and mechanisms of simultaneous removal of Microcystis aeruginosa and microcystins by electrochemical technology using activated carbon fiber/nickel foam as cathode material.
    Lian H; Xiang P; Xue Y; Jiang Y; Li M; Mo J
    Chemosphere; 2020 Aug; 252():126431. PubMed ID: 32208197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loofah-derived activated carbon supported on nickel foam (AC/Ni) electrodes for the electro-sorption of ammonium ion from aqueous solutions.
    Shih YJ; Dong CD; Huang YH; Huang CP
    Chemosphere; 2020 Mar; 242():125259. PubMed ID: 31896176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.
    Brooks AJ; Lim HN; Kilduff JE
    Nanotechnology; 2012 Jul; 23(29):294008. PubMed ID: 22743805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical regeneration of granular activated carbons loaded with phenol and natural organic matter.
    Narbaitz RM; Karimi-Jashni A
    Environ Technol; 2009 Jan; 30(1):27-36. PubMed ID: 19213463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.