These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33011571)

  • 1. A review on clay wettability: From experimental investigations to molecular dynamics simulations.
    Pan B; Yin X; Iglauer S
    Adv Colloid Interface Sci; 2020 Nov; 285():102266. PubMed ID: 33011571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability of rock/CO
    Arif M; Abu-Khamsin SA; Iglauer S
    Adv Colloid Interface Sci; 2019 Jun; 268():91-113. PubMed ID: 30999164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Surface Charge Approach to Investigating the Influence of Oil Contacting Clay Minerals on Wettability Alteration.
    Mohammed I; Al Shehri D; Mahmoud M; Kamal MS; Alade OS
    ACS Omega; 2021 May; 6(19):12841-12852. PubMed ID: 34056435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Simulations of Oil-Water Wetting Models of Organic Matter and Minerals in Shale at the Nanometer Scale.
    Dong Z; Xue H; Li B; Tian S; Lu S; Lu S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):85-97. PubMed ID: 33213615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Native Reservoir State and Oilfield Operations on Clay Mineral Surface Chemistry.
    Mohammed I; Al Shehri D; Mahmoud M; Kamal MS; Alade O; Arif M; Patil S
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Origin of Wettability Alteration of Subsurface Porous Media upon Gas Pressure Variations.
    Ho TA; Wang Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):41330-41338. PubMed ID: 34410713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution and Mobility of Crude Oil-Brine in Clay Mesopores: Insights from Molecular Dynamics Simulations.
    Zhang L; Lu X; Liu X; Li Q; Cheng Y; Hou Q; Cai J
    Langmuir; 2019 Nov; 35(46):14818-14832. PubMed ID: 31660745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Montmorillonite, Kaolinite, or Illite in Pyrite Flotation: Differences in Clay Behavior Based on Their Structures.
    Chen L; Zhao Y; Bai H; Ai Z; Chen P; Hu Y; Song S; Komarneni S
    Langmuir; 2020 Sep; 36(36):10860-10867. PubMed ID: 32813528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations.
    Greathouse JA; Cygan RT
    Environ Sci Technol; 2006 Jun; 40(12):3865-71. PubMed ID: 16830554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of organic ligands on low surface charge clay minerals: the composition in the aqueous interface region.
    Jelavić S; Stipp SLS; Bovet N
    Phys Chem Chem Phys; 2018 Jun; 20(25):17226-17233. PubMed ID: 29900457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.
    Bourg IC; Ajo-Franklin JB
    Acc Chem Res; 2017 Sep; 50(9):2067-2074. PubMed ID: 28862427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration.
    Wang S; Edwards IM; Clarens AF
    Environ Sci Technol; 2013 Jan; 47(1):234-41. PubMed ID: 22857395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of lipopolysaccharide coating on clay particle wettability.
    Chen G; Zhu H
    Colloids Surf B Biointerfaces; 2004 May; 35(2):143-7. PubMed ID: 15261047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane and CO
    Psarras P; Holmes R; Vishal V; Wilcox J
    Acc Chem Res; 2017 Aug; 50(8):1818-1828. PubMed ID: 28762725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards the design of new and improved drilling fluid additives using molecular dynamics simulations.
    Anderson RL; Greenwel HC; Suter JL; Jarvis RM; Coveney PV
    An Acad Bras Cienc; 2010 Mar; 82(1):43-60. PubMed ID: 20209242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of Oil-Water Rock Wettability of Different Constituent Alkanes on Kaolinite Surfaces at the Nanometer Scale.
    Xue H; Dong Z; Chen X; Tian S; Lu S; Lu S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):225-233. PubMed ID: 33213625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the firing behaviour of an illite-kaolinite clay mineral and its potential use as membrane support.
    Elgamouz A; Tijani N; Shehadi I; Hasan K; Al-Farooq Kawam M
    Heliyon; 2019 Aug; 5(8):e02281. PubMed ID: 31508517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational diffusion of water and its dependence on temperature in charged and uncharged clays: A neutron scattering study.
    González Sánchez F; Jurányi F; Gimmi T; Van Loon L; Unruh T; Diamond LW
    J Chem Phys; 2008 Nov; 129(17):174706. PubMed ID: 19045369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore wettability for enhanced oil recovery, contaminant adsorption and oil/water separation: A review.
    Ding F; Gao M
    Adv Colloid Interface Sci; 2021 Mar; 289():102377. PubMed ID: 33601298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercritical CO
    Hwang J; Pini R
    Environ Sci Technol; 2019 Oct; 53(19):11588-11596. PubMed ID: 31478655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.