These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33011572)

  • 1. Advances of 3D graphene and its composites in the field of microwave absorption.
    Sultanov F; Daulbayev C; Bakbolat B; Daulbayev O
    Adv Colloid Interface Sci; 2020 Nov; 285():102281. PubMed ID: 33011572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D porous coral-like Co
    Qiu J; Cao H; Liao J; Du R; Dou K; Tsidaeva N; Wang W
    J Colloid Interface Sci; 2022 Mar; 609():12-22. PubMed ID: 34890948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-light Cu@Ni nanowires/graphene oxide composites for significantly enhanced microwave absorption performance.
    Wang X; Zhang B; Zhang W; Yu M; Cui L; Cao X; Liu J
    Sci Rep; 2017 May; 7(1):1584. PubMed ID: 28484217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Design of Three-Dimensional Nitrogen-Doped Reduced Graphene Oxide/Multi-Walled Carbon Nanotube Composite Foams as Lightweight and Highly Efficient Microwave Absorbers.
    Shu R; Wan Z; Zhang J; Wu Y; Liu Y; Shi J; Zheng M
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4689-4698. PubMed ID: 31889438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of ultralight nitrogen-doped reduced graphene oxide/nickel ferrite composite foams with three-dimensional porous network structure as ultrathin and high-performance microwave absorbers.
    Deng L; Shu R; Zhang J
    J Colloid Interface Sci; 2022 May; 614():110-119. PubMed ID: 35091140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous Graphene Microflowers for High-Performance Microwave Absorption.
    Chen C; Xi J; Zhou E; Peng L; Chen Z; Gao C
    Nanomicro Lett; 2018; 10(2):26. PubMed ID: 30393675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and lightweight microwave absorber.
    Zhao H; Han X; Li Z; Liu D; Wang Y; Wang Y; Zhou W; Du Y
    J Colloid Interface Sci; 2018 Oct; 528():174-183. PubMed ID: 29852347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of CoFe@N-doped C/rGO composites derived from CoFe Prussian blue analogues for efficient microwave absorption.
    Wei S; Chen T; Shi Z; Chen S
    J Colloid Interface Sci; 2022 Mar; 610():395-406. PubMed ID: 34923277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile fabrication of sepiolite functionalized composites with tunable dielectric properties and their superior microwave absorption performance.
    Shang Q; Feng H; Feng Z; Chen N; Tan L; Qiu J; Wu H
    J Colloid Interface Sci; 2020 Sep; 576():444-456. PubMed ID: 32464568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of three-dimensional porous netlike nitrogen-doped reduced graphene oxide/cerium oxide composite aerogels towards high-efficiency microwave absorption.
    Wu L; Shu R; Zhang J; Chen X
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1212-1221. PubMed ID: 34742055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of nitrogen-doped reduced graphene oxide/cobalt-zinc ferrite composite aerogels with superior compression recovery and electromagnetic wave absorption performance.
    Shu R; Zhang J; Wu Y; Wan Z; Li X
    Nanoscale; 2021 Mar; 13(8):4485-4495. PubMed ID: 33599652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balancing Dielectric Loss and Magnetic Loss in Fe-NiS
    Gao N; Li WP; Wang WS; Liu DP; Cui YM; Guo L; Wang GS
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14416-14424. PubMed ID: 32125144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband and Lightweight Microwave Absorber Constructed by in Situ Growth of Hierarchical CoFe
    Liu Y; Chen Z; Zhang Y; Feng R; Chen X; Xiong C; Dong L
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13860-13868. PubMed ID: 29589899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Conjugated Polymer-Based Microwave Absorbing Materials.
    Wang Y; Du Y; Xu P; Qiang R; Han X
    Polymers (Basel); 2017 Jan; 9(1):. PubMed ID: 30970705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystalline-Amorphous Permalloy@Iron Oxide Core-Shell Nanoparticles Decorated on Graphene as High-Efficiency, Lightweight, and Hydrophobic Microwave Absorbents.
    Sun Y; Zhang J; Zong Y; Deng X; Zhao H; Feng J; He M; Li X; Peng Y; Zheng X
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6374-6383. PubMed ID: 30673262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOF Induces 2D GO to Assemble into 3D Accordion-Like Composites for Tunable and Optimized Microwave Absorption Performance.
    Li Q; Zhao Y; Li X; Wang L; Li X; Zhang J; Che R
    Small; 2020 Oct; 16(42):e2003905. PubMed ID: 32996264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultralight MOF-Derived Ni
    Yu W; Liu B; Zhao X
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of the polarization point on the graphene aerogel to achieve strong dielectric loss behavior.
    Ma J; Liu W; Quan B; Liang X; Ji G
    J Colloid Interface Sci; 2017 Oct; 504():479-484. PubMed ID: 28600941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave absorbing property optimization of starlike ZnO/reduced graphene oxide doped by ZnO nanocrystal composites.
    Feng W; Wang Y; Chen J; Guo L; Ouyang J; Jia D; Zhou Y
    Phys Chem Chem Phys; 2017 Jun; 19(22):14596-14605. PubMed ID: 28537307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralight Open-Cell Graphene Aerogels with Multiple, Gradient Microstructures for Efficient Microwave Absorption.
    Mei Q; Xiao H; Ding G; Liu H; Zhao C; Wang R; Huang Z
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.