These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33011865)

  • 1. The hemoglobin Gly16β1Asp polymorphism in turbot (Scophthalmus maximus) is differentially distributed across European populations.
    Andersen Ø; Rubiolo JA; De Rosa MC; Martinez P
    Fish Physiol Biochem; 2020 Dec; 46(6):2367-2376. PubMed ID: 33011865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel evolution and adaptation to environmental factors in a marine flatfish: Implications for fisheries and aquaculture management of the turbot (
    do Prado FD; Vera M; Hermida M; Bouza C; Pardo BG; Vilas R; Blanco A; Fernández C; Maroso F; Maes GE; Turan C; Volckaert FAM; Taggart JB; Carr A; Ogden R; Nielsen EE; ; Martínez P
    Evol Appl; 2018 Sep; 11(8):1322-1341. PubMed ID: 30151043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): a fish adapted to demersal life.
    Figueras A; Robledo D; Corvelo A; Hermida M; Pereiro P; Rubiolo JA; Gómez-Garrido J; Carreté L; Bello X; Gut M; Gut IG; Marcet-Houben M; Forn-Cuní G; Galán B; García JL; Abal-Fabeiro JL; Pardo BG; Taboada X; Fernández C; Vlasova A; Hermoso-Pulido A; Guigó R; Álvarez-Dios JA; Gómez-Tato A; Viñas A; Maside X; Gabaldón T; Novoa B; Bouza C; Alioto T; Martínez P
    DNA Res; 2016 Jun; 23(3):181-92. PubMed ID: 26951068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot.
    Robledo D; Fernández C; Hermida M; Sciara A; Álvarez-Dios JA; Cabaleiro S; Caamaño R; Martínez P; Bouza C
    Int J Mol Sci; 2016 Feb; 17(2):243. PubMed ID: 26901189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-synonymous variation and protein structure of candidate genes associated with selection in farm and wild populations of turbot (Scophthalmus maximus).
    Andersen Ø; Rubiolo JA; Pirolli D; Aramburu O; Pampín M; Righino B; Robledo D; Bouza C; De Rosa MC; Martínez P
    Sci Rep; 2023 Feb; 13(1):3019. PubMed ID: 36810752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot, Scophthalmus maximus.
    Ceinos RM; Chivite M; López-Patiño MA; Naderi F; Soengas JL; Foulkes NS; Míguez JM
    PLoS One; 2019; 14(7):e0219153. PubMed ID: 31276539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genome-wide association study, supported by a new chromosome-level genome assembly, suggests sox2 as a main driver of the undifferentiatiated ZZ/ZW sex determination of turbot (Scophthalmus maximus).
    Martínez P; Robledo D; Taboada X; Blanco A; Moser M; Maroso F; Hermida M; Gómez-Tato A; Álvarez-Blázquez B; Cabaleiro S; Piferrer F; Bouza C; Lien S; Viñas AM
    Genomics; 2021 Jul; 113(4):1705-1718. PubMed ID: 33838278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly dense linkage maps from 31 full-sibling families of turbot (Scophthalmus maximus) provide insights into recombination patterns and chromosome rearrangements throughout a newly refined genome assembly.
    Maroso F; Hermida M; Millán A; Blanco A; Saura M; Fernández A; Dalla Rovere G; Bargelloni L; Cabaleiro S; Villanueva B; Bouza C; Martínez P
    DNA Res; 2018 Aug; 25(4):439-450. PubMed ID: 29897548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Draft genomes of female and male turbot Scophthalmus maximus.
    Xu XW; Shao CW; Xu H; Zhou Q; You F; Wang N; Li WL; Li M; Chen SL
    Sci Data; 2020 Mar; 7(1):90. PubMed ID: 32165614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential gene expression and SNP association between fast- and slow-growing turbot (Scophthalmus maximus).
    Robledo D; Rubiolo JA; Cabaleiro S; Martínez P; Bouza C
    Sci Rep; 2017 Sep; 7(1):12105. PubMed ID: 28935875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combined strategy involving Sanger and 454 pyrosequencing increases genomic resources to aid in the management of reproduction, disease control and genetic selection in the turbot (Scophthalmus maximus).
    Ribas L; Pardo BG; Fernández C; Alvarez-Diós JA; Gómez-Tato A; Quiroga MI; Planas JV; Sitjà-Bobadilla A; Martínez P; Piferrer F
    BMC Genomics; 2013 Mar; 14():180. PubMed ID: 23497389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular identification, polymorphism, and expression analysis of major histocompatibility complex class IIA and B genes of turbot (Scophthalmus maximus).
    Zhang YX; Chen SL
    Mar Biotechnol (NY); 2006; 8(6):611-23. PubMed ID: 16832747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of MiRNA Transcriptome in Turbot (Scophthalmus maximus L.) Intestine Following Vibrio anguillarum Infection.
    Gao C; Cai X; Fu Q; Yang N; Song L; Su B; Tan F; Liu B; Li C
    Mar Biotechnol (NY); 2019 Aug; 21(4):550-564. PubMed ID: 31111338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genome scan for candidate genes involved in the adaptation of turbot (Scophthalmus maximus).
    Vilas R; Vandamme SG; Vera M; Bouza C; Maes GE; Volckaert FA; Martínez P
    Mar Genomics; 2015 Oct; 23():77-86. PubMed ID: 25959584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population genetic structure of turbot (Scophthalmus maximus L., 1758) in the Black Sea.
    Firidin S; Ozturk RC; Alemdag M; Eroglu O; Terzi Y; Kutlu I; Duzgunes ZD; Cakmak E; Aydin I
    J Fish Biol; 2020 Oct; 97(4):1154-1164. PubMed ID: 32767370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional differentiation of three phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) in response to Vibrio anguillarum infection in turbot (Scophthalmus maximus).
    Zhang K; Liu X; Han M; Liu Y; Wang X; Yu H; Liu J; Zhang Q
    Fish Shellfish Immunol; 2019 Sep; 92():450-459. PubMed ID: 31207302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional environmental pressure influences population differentiation in turbot (Scophthalmus maximus).
    Vandamme SG; Maes GE; Raeymaekers JA; Cottenie K; Imsland AK; Hellemans B; Lacroix G; Mac Aoidh E; Martinsohn JT; Martínez P; Robbens J; Vilas R; Volckaert FA
    Mol Ecol; 2014 Feb; 23(3):618-36. PubMed ID: 24354713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expressed sequence tags (ESTs) from immune tissues of turbot (Scophthalmus maximus) challenged with pathogens.
    Pardo BG; Fernández C; Millán A; Bouza C; Vázquez-López A; Vera M; Alvarez-Dios JA; Calaza M; Gómez-Tato A; Vázquez M; Cabaleiro S; Magariños B; Lemos ML; Leiro JM; Martínez P
    BMC Vet Res; 2008 Sep; 4():37. PubMed ID: 18817567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of gonadal transcriptomes from the turbot (Scophthalmus maximus).
    Hu Y; Huang M; Wang W; Guan J; Kong J
    Genome; 2016 Jan; 59(1):1-10. PubMed ID: 26745327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-density genetic linkage mapping in turbot (Scophthalmus maximus L.) based on SNP markers and major sex- and growth-related regions detection.
    Wang W; Hu Y; Ma Y; Xu L; Guan J; Kong J
    PLoS One; 2015; 10(3):e0120410. PubMed ID: 25775256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.