These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33012193)

  • 1. Enzymatic regeneration and conservation of ATP: challenges and opportunities.
    Chen H; Zhang YPJ
    Crit Rev Biotechnol; 2021 Feb; 41(1):16-33. PubMed ID: 33012193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging enzymes for ATP regeneration in biocatalytic processes.
    Andexer JN; Richter M
    Chembiochem; 2015 Feb; 16(3):380-6. PubMed ID: 25619338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro ATP regeneration from polyphosphate and AMP by polyphosphate:AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A.
    Resnick SM; Zehnder AJ
    Appl Environ Microbiol; 2000 May; 66(5):2045-51. PubMed ID: 10788379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-Cell Display of Phosphotransferase in
    Zhao S; Yang G; Xie X; Yan G; Wang F; Chen W; Ma L
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of D-xylulose 5-phosphate from D-xylose and polyphosphate through a minimized two-enzyme cascade.
    Kim JE; Zhang YH
    Biotechnol Bioeng; 2016 Feb; 113(2):275-82. PubMed ID: 26241217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electro-enzymatic ATP regeneration coupled to biocatalytic phosphorylation reactions.
    García-Molina G; Natale P; Coito AM; Cava DG; A C Pereira I; López-Montero I; Vélez M; Pita M; De Lacey AL
    Bioelectrochemistry; 2023 Aug; 152():108432. PubMed ID: 37030092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of substrate binding pockets in polyphosphate kinase for use in cost-effective ATP-dependent cascade reactions.
    Cao H; Nie K; Li C; Xu H; Wang F; Tan T; Liu L
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5325-5332. PubMed ID: 28417169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tools and strategies for constructing cell-free enzyme pathways.
    Petroll K; Kopp D; Care A; Bergquist PL; Sunna A
    Biotechnol Adv; 2019; 37(1):91-108. PubMed ID: 30521853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the boundary of biocatalysis: design and optimization of in vitro tandem catalytic reactions for biochemical production.
    Wang Y; Ren H; Zhao H
    Crit Rev Biochem Mol Biol; 2018 Apr; 53(2):115-129. PubMed ID: 29411648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Two Polyphosphate Kinase 2 Enzymes Used for ATP Synthesis.
    Zhang X; Cui X; Li Z
    Appl Biochem Biotechnol; 2020 Jun; 191(2):881-892. PubMed ID: 31907778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An
    Shi T; Han P; You C; Zhang YPJ
    Synth Syst Biotechnol; 2018 Sep; 3(3):186-195. PubMed ID: 30345404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bottom-Up Construction of a Minimal System for Cellular Respiration and Energy Regeneration.
    Biner O; Fedor JG; Yin Z; Hirst J
    ACS Synth Biol; 2020 Jun; 9(6):1450-1459. PubMed ID: 32383867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic Production of Glutathione Coupling with an ATP Regeneration System Based on Polyphosphate Kinase.
    Cao H; Li C; Zhao J; Wang F; Tan T; Liu L
    Appl Biochem Biotechnol; 2018 Jun; 185(2):385-395. PubMed ID: 29164506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MEMO: A Method for Computing Metabolic Modules for Cell-Free Production Systems.
    Kamp AV; Klamt S
    ACS Synth Biol; 2020 Mar; 9(3):556-566. PubMed ID: 32069395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch.
    You C; Shi T; Li Y; Han P; Zhou X; Zhang YP
    Biotechnol Bioeng; 2017 Aug; 114(8):1855-1864. PubMed ID: 28409846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of polyphosphate kinases for the synthesis of GSH with ATP regeneration from AMP.
    Cui C; Kong M; Wang Y; Zhou C; Ming H
    Enzyme Microb Technol; 2021 Sep; 149():109853. PubMed ID: 34311890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system.
    Zhang X; Wu H; Huang B; Li Z; Ye Q
    J Biotechnol; 2017 Jan; 241():163-169. PubMed ID: 27919691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Step Preparation of Cell-Free ATP Regeneration Module Based on Non-Oxidative Glycolysis Using Thermophilic Enzymes.
    Suryatin Alim G; Okano K; Honda K
    Chembiochem; 2022 Aug; 23(16):e202200210. PubMed ID: 35642750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of aminoacyl prolines using the adenylation domain of nonribosomal peptide synthetase with class III polyphosphate kinase 2-mediated ATP regeneration.
    Suzuki S; Hara R; Kino K
    J Biosci Bioeng; 2018 Jun; 125(6):644-648. PubMed ID: 29366718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designer metalloenzymes for synthetic biology: Enzyme hybrids for catalysis.
    Jarvis AG
    Curr Opin Chem Biol; 2020 Oct; 58():63-71. PubMed ID: 32768658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.