These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33013190)

  • 1. Test of a Relationship between Spatial Working Memory and Perception of Symmetry Axes in Children 3 to 6 Years of Age.
    Wu Y; Schutte AR
    Spat Cogn Comput; 2020; 20(2):104-133. PubMed ID: 33013190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between the perception of axes of symmetry and spatial memory during early childhood.
    Ortmann MR; Schutte AR
    J Exp Child Psychol; 2010 Nov; 107(3):368-76. PubMed ID: 20576276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalizing the dynamic field theory of the A-not-B error beyond infancy: three-year-olds' delay- and experience-dependent location memory biases.
    Schutte AR; Spencer JP
    Child Dev; 2002; 73(2):377-404. PubMed ID: 11949898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tests of the dynamic field theory and the spatial precision hypothesis: capturing a qualitative developmental transition in spatial working memory.
    Schutte AR; Spencer JP
    J Exp Psychol Hum Percept Perform; 2009 Dec; 35(6):1698-725. PubMed ID: 19968430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Test of a dynamic neural field model: spatial working memory is biased away from distractors.
    Schutte AR; DeGirolamo GJ
    Psychol Res; 2020 Sep; 84(6):1528-1544. PubMed ID: 30911825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental continuity in the processes that underlie spatial recall.
    Spencer JP; Hund AM
    Cogn Psychol; 2003 Dec; 47(4):432-80. PubMed ID: 14642291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental Differences in the Influence of Distractors on Maintenance in Spatial Working Memory.
    Schutte AR; Keiser BA; Beattie HL
    J Cogn Dev; 2017; 18(3):338-357. PubMed ID: 30906231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing the dynamic field theory: working memory for locations becomes more spatially precise over development.
    Schutte AR; Spencer JP; Schöner G
    Child Dev; 2003; 74(5):1393-417. PubMed ID: 14552405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of experience in location estimation: Target distributions shift location memory biases.
    Lipinski J; Simmering VR; Johnson JS; Spencer JP
    Cognition; 2010 Apr; 115(1):147-53. PubMed ID: 20116784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking "what" and "where" information: How the strength of object categories influences children's memory for object locations.
    Plumert JM; Franzen LJ; Mathews MM; Violante C
    J Exp Child Psychol; 2017 May; 157():95-110. PubMed ID: 28131068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames.
    Simmering VR; Peterson C; Darling W; Spencer JP
    Exp Brain Res; 2008 Jan; 184(2):165-78. PubMed ID: 17703284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing a dynamic-field account of interactions between spatial attention and spatial working memory.
    Johnson JS; Spencer JP
    Atten Percept Psychophys; 2016 May; 78(4):1043-63. PubMed ID: 26810574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prototypes and particulars: geometric and experience-dependent spatial categories.
    Spencer JP; Hund AM
    J Exp Psychol Gen; 2002 Mar; 131(1):16-37. PubMed ID: 11900101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a formal theory of flexible spatial behavior: geometric category biases generalize across pointing and verbal response types.
    Spencer JP; Simmering VR; Schutte AR
    J Exp Psychol Hum Percept Perform; 2006 Apr; 32(2):473-90. PubMed ID: 16634683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location memory in the real world: category adjustment effects in 3-dimensional space.
    Holden MP; Newcombe NS; Shipley TF
    Cognition; 2013 Jul; 128(1):45-55. PubMed ID: 23578687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of spatial memory and spatial orientation in preschoolers and primary school children.
    Lehnung M; Leplow B; Friege L; Herzog A; Ferstl R; Mehdorn M
    Br J Psychol; 1998 Aug; 89 ( Pt 3)():463-80. PubMed ID: 9734301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reference-related inhibition produces enhanced position discrimination and fast repulsion near axes of symmetry.
    Simmering VR; Spencer JP; Schöner G
    Percept Psychophys; 2006 Aug; 68(6):1027-46. PubMed ID: 17153196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian average or truncation at boundaries? The mechanisms underlying categorical bias in spatial memory.
    Sampaio C; Wang RF
    Mem Cognit; 2019 Apr; 47(3):473-484. PubMed ID: 30560470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic angular biases in the representation of visual space.
    Yousif SR; Chen YC; Scholl BJ
    Atten Percept Psychophys; 2020 Aug; 82(6):3124-3143. PubMed ID: 32350829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal strength determines the nature of the relationship between perception and working memory.
    Sheth BR; Shimojo S
    J Cogn Neurosci; 2003 Feb; 15(2):173-84. PubMed ID: 12676055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.