These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33013307)

  • 1. The Discovery and Characterization of Targeted Perikaryal-Specific Brain Lesions With Excitotoxins.
    Coyle JT; Schwarcz R
    Front Neurosci; 2020; 14():927. PubMed ID: 33013307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 1993 Upjohn Award Lecture. Quinolinic acid induced brain neurotransmitter deficits: modulation by endogenous excitotoxin antagonists.
    Jhamandas KH; Boegman RJ; Beninger RJ
    Can J Physiol Pharmacol; 1994 Dec; 72(12):1473-82. PubMed ID: 7736338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitatory amino acid analogues: neurotoxicity and seizures.
    Zaczek R; Coyle JT
    Neuropharmacology; 1982 Jan; 21(1):15-26. PubMed ID: 7063105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroprotective effects of MK-801 in vivo: selectivity and evidence for delayed degeneration mediated by NMDA receptor activation.
    Foster AC; Gill R; Woodruff GN
    J Neurosci; 1988 Dec; 8(12):4745-54. PubMed ID: 2904493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative analysis of the neuroprotective properties of competitive and uncompetitive N-methyl-D-aspartate receptor antagonists in vivo: implications for the process of excitotoxic degeneration and its therapy.
    Massieu L; Thedinga KH; McVey M; Fagg GE
    Neuroscience; 1993 Aug; 55(4):883-92. PubMed ID: 7694181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitotoxic lesions of rat basal forebrain: differential effects on choline acetyltransferase in the cortex and amygdala.
    Boegman RJ; Cockhill J; Jhamandas K; Beninger RJ
    Neuroscience; 1992 Nov; 51(1):129-35. PubMed ID: 1281523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential brain area vulnerability to long-term subcortical excitotoxic lesions.
    Mahy N; Bendahan G; Boatell ML; Bjelke B; Tinner B; Olson L; Fuxe K
    Neuroscience; 1995 Mar; 65(1):15-25. PubMed ID: 7538642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of excitotoxic lesions of the basal forebrain by kainate, quinolinate, ibotenate, N-methyl-D-aspartate or quisqualate, and the effects on toxicity of 2-amino-5-phosphonovaleric acid and kynurenic acid in the rat.
    Winn P; Stone TW; Latimer M; Hastings MH; Clark AJ
    Br J Pharmacol; 1991 Apr; 102(4):904-8. PubMed ID: 1677299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neurotoxic actions of quinolinic acid in the central nervous system.
    el-Defrawy SR; Boegman RJ; Jhamandas K; Beninger RJ
    Can J Physiol Pharmacol; 1986 Mar; 64(3):369-75. PubMed ID: 2939936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus.
    Ganong AH; Cotman CW
    J Pharmacol Exp Ther; 1986 Jan; 236(1):293-9. PubMed ID: 2867215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the excitotoxic properties of quinolinic acid, 2,3-piperidine dicarboxylic acids and structurally related compounds.
    Foster AC; Collins JF; Schwarcz R
    Neuropharmacology; 1983 Dec; 22(12A):1331-42. PubMed ID: 6229703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local and distant neuronal degeneration following intrastriatal injection of kainic acid.
    Zaczek R; Simonton S; Coyle JT
    J Neuropathol Exp Neurol; 1980 May; 39(3):245-64. PubMed ID: 6154134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions.
    Beal MF; Kowall NW; Swartz KJ; Ferrante RJ; Martin JB
    Synapse; 1989; 3(1):38-47. PubMed ID: 2563916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of kainic and other amino acids on synaptic excitation in rat hippocampal slices: 1. Extracellular analysis.
    Collingridge GL; Kehl SJ; Loo R; McLennan H
    Exp Brain Res; 1983; 52(2):170-8. PubMed ID: 6139291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CGS-19755 and MK-801 selectively prevent rat striatal cholinergic and gabaergic neuronal degeneration induced by N-methyl-D-aspartate and ibotenate in vivo.
    Schoepp DD; Salhoff CR; Hillman CC; Ornstein PL
    J Neural Transm Gen Sect; 1989; 78(3):183-93. PubMed ID: 2553073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the neonatal rat hippocampus by 2-amino-3-phosphonopropionate.
    Schoepp DD; Johnson BG
    J Neurochem; 1989 Dec; 53(6):1865-70. PubMed ID: 2572680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain.
    Schwarcz R; Whetsell WO; Mangano RM
    Science; 1983 Jan; 219(4582):316-8. PubMed ID: 6849138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytotoxic effect of glutamate and its agonists on mouse hippocampal neurons.
    Khaspekov LG; Stastný F; Viktorov IV; Lisý V
    J Hirnforsch; 1990; 31(5):635-43. PubMed ID: 1982007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate-mediated excitotoxic death of cultured striatal neurons is mediated by non-NMDA receptors.
    Chen Q; Harris C; Brown CS; Howe A; Surmeier DJ; Reiner A
    Exp Neurol; 1995 Dec; 136(2):212-24. PubMed ID: 7498411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are NMDA or AMPA/kainate receptor antagonists more efficacious in the delayed treatment of excitotoxic neuronal injury?
    Prehn JH; Lippert K; Krieglstein J
    Eur J Pharmacol; 1995 Jan; 292(2):179-89. PubMed ID: 7720791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.