BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33013491)

  • 1. Continuous Blood Pressure Estimation From Electrocardiogram and Photoplethysmogram During Arrhythmias.
    Liu Z; Zhou B; Li Y; Tang M; Miao F
    Front Physiol; 2020; 11():575407. PubMed ID: 33013491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A continuous cuffless blood pressure measurement from optimal PPG characteristic features using machine learning algorithms.
    Nishan A; M Taslim Uddin Raju S; Hossain MI; Dipto SA; M Tanvir Uddin S; Sijan A; Chowdhury MAS; Ahmad A; Mahamudul Hasan Khan M
    Heliyon; 2024 Mar; 10(6):e27779. PubMed ID: 38533045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms.
    Baker S; Xiang W; Atkinson I
    Comput Methods Programs Biomed; 2021 Aug; 207():106191. PubMed ID: 34077866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting Algorithms based Cuff-less Blood Pressure Estimation from Clinically Relevant ECG and PPG Morphological Features.
    Ghosh A; Sarkar S; Liu H; Mandal S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38082568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal.
    Hu Q; Deng X; Wang A; Yang C
    Physiol Meas; 2021 Jan; 41(12):125009. PubMed ID: 33166940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Sensor Fusion Approach for Cuff-Less Blood Pressure Measurement.
    Miao F; Liu ZD; Liu JK; Wen B; He QY; Li Y
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):79-91. PubMed ID: 30892255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a portable-noninvasive blood pressure monitoring system utilizing the photoplethysmogram signal.
    Dagamseh A; Qananwah Q; Al Quran H; Shaker Ibrahim K
    Biomed Opt Express; 2021 Dec; 12(12):7732-7751. PubMed ID: 35003863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Clustering-Based Algorithm for Continuous and Noninvasive Cuff-Less Blood Pressure Estimation.
    Farki A; Baradaran Kazemzadeh R; Akhondzadeh Noughabi E
    J Healthc Eng; 2022; 2022():3549238. PubMed ID: 35075386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Fiducial Point Detection Using Haar Wavelet for Beat-by-Beat Blood Pressure Estimation.
    Singla M; Azeemuddin S; Sistla P
    IEEE J Transl Eng Health Med; 2020; 8():1900711. PubMed ID: 32596063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals.
    Mahmud S; Ibtehaz N; Khandakar A; Tahir AM; Rahman T; Islam KR; Hossain MS; Rahman MS; Musharavati F; Ayari MA; Islam MT; Chowdhury MEH
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multi-Parameter Fusion Method for Cuffless Continuous Blood Pressure Estimation Based on Electrocardiogram and Photoplethysmogram.
    Ma G; Zhang J; Liu J; Wang L; Yu Y
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37421037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cuff-less Blood Pressure Measurement Using Supplementary ECG and PPG Features Extracted Through Wavelet Transformation.
    Singla M; Sistla P; Azeemuddin S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4628-4631. PubMed ID: 31946895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Schrödinger spectrum based continuous cuff-less blood pressure estimation using clinically relevant features from PPG signal and its second derivative.
    Sarkar S; Ghosh A
    Comput Biol Med; 2023 Nov; 166():107558. PubMed ID: 37806054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure.
    Finnegan E; Davidson S; Harford M; Watkinson P; Tarassenko L; Villarroel M
    Sci Rep; 2023 Jan; 13(1):986. PubMed ID: 36653426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of cuffless blood pressure estimation method based on multiple physiological parameters.
    Zhang Y; Zhou C; Huang Z; Ye X
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33857923
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.