BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33013491)

  • 21. Study of cuffless blood pressure estimation method based on multiple physiological parameters.
    Zhang Y; Zhou C; Huang Z; Ye X
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33857923
    [No Abstract]   [Full Text] [Related]  

  • 22. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calibration-free blood pressure estimation based on a convolutional neural network.
    Cho J; Shin H; Choi A
    Psychophysiology; 2024 Apr; 61(4):e14480. PubMed ID: 37971153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques.
    Chowdhury MH; Shuzan MNI; Chowdhury MEH; Mahbub ZB; Uddin MM; Khandakar A; Reaz MBI
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32492902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. KD-Informer: A Cuff-Less Continuous Blood Pressure Waveform Estimation Approach Based on Single Photoplethysmography.
    Ma C; Zhang P; Song F; Sun Y; Fan G; Zhang T; Feng Y; Zhang G
    IEEE J Biomed Health Inform; 2023 May; 27(5):2219-2230. PubMed ID: 35700247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cuff-Less Blood Pressure Estimation via Small Convolutional Neural Networks.
    Wang W; Mohseni P; Kilgore K; Najafizadeh L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1031-1034. PubMed ID: 34891464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PPG2ABP: Translating Photoplethysmogram (PPG) Signals to Arterial Blood Pressure (ABP) Waveforms.
    Ibtehaz N; Mahmud S; Chowdhury MEH; Khandakar A; Salman Khan M; Ayari MA; Tahir AM; Rahman MS
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36421093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blood Pressure Estimation Based on PPG and ECG Signals Using Knowledge Distillation.
    Tang H; Ma G; Qiu L; Zheng L; Bao R; Liu J; Wang L
    Cardiovasc Eng Technol; 2024 Feb; 15(1):39-51. PubMed ID: 38191807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cuff-Less Blood Pressure Estimation From Photoplethysmography via Visibility Graph and Transfer Learning.
    Wang W; Mohseni P; Kilgore KL; Najafizadeh L
    IEEE J Biomed Health Inform; 2022 May; 26(5):2075-2085. PubMed ID: 34784289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noninvasive Cuffless Blood Pressure Estimation With Dendritic Neural Regression.
    Ji J; Dong M; Lin Q; Tan KC
    IEEE Trans Cybern; 2023 Jul; 53(7):4162-4174. PubMed ID: 35113792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid CNN-SVR Blood Pressure Estimation Model Using ECG and PPG Signals.
    Rastegar S; Gholam Hosseini H; Lowe A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation.
    Wan-Hua Lin ; Hui Wang ; Samuel OW; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():738-741. PubMed ID: 29059978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cuff-less blood pressure measurement based on hybrid feature selection algorithm and multi-penalty regularized regression technique.
    Khan Mamun MMR
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34633299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Introduction of Boosting Algorithms in Continuous Non-Invasive Cuff-less Blood Pressure Estimation using Pulse Arrival Time.
    Ghosh A; Chatterjee T; Sarkar S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5429-5432. PubMed ID: 34892354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PulseDB: A large, cleaned dataset based on MIMIC-III and VitalDB for benchmarking cuff-less blood pressure estimation methods.
    Wang W; Mohseni P; Kilgore KL; Najafizadeh L
    Front Digit Health; 2022; 4():1090854. PubMed ID: 36844249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous Blood Pressure Estimation From Non-Invasive Measurements Using Support Vector Regression.
    Rastegar A S; GholamHosseini A H; Lowe A A; Linden B M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1487-1490. PubMed ID: 34891566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy.
    Lin WH; Wang H; Samuel OW; Liu G; Huang Z; Li G
    Physiol Meas; 2018 Feb; 39(2):025005. PubMed ID: 29319536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only.
    Hsu YC; Li YH; Chang CC; Harfiya LN
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33020401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous Blood Pressure Estimation Based on Multi-Scale Feature Extraction by the Neural Network With Multi-Task Learning.
    Jiang H; Zou L; Huang D; Feng Q
    Front Neurosci; 2022; 16():883693. PubMed ID: 35600611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.