These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33013778)

  • 1. An Experimentally Evaluated Thermodynamic Approach to Estimate Growth of Photoheterotrophic Purple Non-sulfur Bacteria.
    Doloman A; Seefeldt LC
    Front Microbiol; 2020; 11():540378. PubMed ID: 33013778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the transcriptional activator NifA for the construction of Rhodobacter sphaeroides strains that produce hydrogen gas constitutively.
    Shimizu T; Teramoto H; Inui M
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9739-9749. PubMed ID: 31696284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris.
    Navid A; Jiao Y; Wong SE; Pett-Ridge J
    BMC Bioinformatics; 2019 May; 20(1):233. PubMed ID: 31072303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nitrogen-fixing gene (nifH) of Rhodopseudomonas palustris: a case of lateral gene transfer?
    Cantera JJL; Kawasaki H; Seki T
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2237-2246. PubMed ID: 15256566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent polyvinyl-alcohol cryogel as immobilisation matrix for continuous biohydrogen production by phototrophic bacteria.
    du Toit JP; Pott RWM
    Biotechnol Biofuels; 2020; 13():105. PubMed ID: 32536970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phototrophic bacteria
    Conners EM; Rengasamy K; Bose A
    bioRxiv; 2023 May; ():. PubMed ID: 37292726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris.
    Rey FE; Oda Y; Harwood CS
    J Bacteriol; 2006 Sep; 188(17):6143-52. PubMed ID: 16923881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phototrophic N
    Soundararajan M; Ledbetter R; Kusuma P; Zhen S; Ludden P; Bugbee B; Ensign SA; Seefeldt LC
    Front Microbiol; 2019; 10():1817. PubMed ID: 31474945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides.
    Novak RT; Gritzer RF; Leadbetter ER; Godchaux W
    Microbiology (Reading); 2004 Jun; 150(Pt 6):1881-1891. PubMed ID: 15184574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteomic analysis of Rhodopseudomonas palustris reveals the role of pyruvate phosphate dikinase phosphorylation in lipid production.
    Hu CW; Lin MH; Huang HC; Ku WC; Yi TH; Tsai CF; Chen YJ; Sugiyama N; Ishihama Y; Juan HF; Wu SH
    J Proteome Res; 2012 Nov; 11(11):5362-75. PubMed ID: 23030682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Rhizobiales-Specific Unipolar Polysaccharide Adhesin Contributes to Rhodopseudomonas palustris Biofilm Formation across Diverse Photoheterotrophic Conditions.
    Fritts RK; LaSarre B; Stoner AM; Posto AL; McKinlay JB
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27986718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Lighting Systems, Carbon Sources, and Bacteria Cultures on Photofermentative Hydrogen Production.
    Hu C; Choy SY; Giannis A
    Appl Biochem Biotechnol; 2018 May; 185(1):257-269. PubMed ID: 29127540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyphosphate metabolism by purple non-sulfur bacteria and its possible application on photo-microbial fuel cell.
    Lai YC; Liang CM; Hsu SC; Hsieh PH; Hung CH
    J Biosci Bioeng; 2017 Jun; 123(6):722-730. PubMed ID: 28291662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox Regulation of a Light-Harvesting Antenna Complex in an Anoxygenic Phototroph.
    Fixen KR; Oda Y; Harwood CS
    mBio; 2019 Nov; 10(6):. PubMed ID: 31772049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic Degradation of Syringic Acid by an Adapted Strain of Rhodopseudomonas palustris.
    Oshlag JZ; Ma Y; Morse K; Burger BT; Lemke RA; Karlen SD; Myers KS; Donohue TJ; Noguera DR
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31732577
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Craven J; Sultan MA; Sarma R; Wilson S; Meeks N; Kim DY; Hastings JT; Bhattacharyya D
    RSC Adv; 2019 Dec; 9(70):41218-41227. PubMed ID: 35540054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phototrophic Lactate Utilization by
    Govindaraju A; McKinlay JB; LaSarre B
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen fixation in Rhodopseudomonas palustris co-cultured with Bacillus subtilis in the presence of air.
    Arashida H; Kugenuma T; Watanabe M; Maeda I
    J Biosci Bioeng; 2019 May; 127(5):589-593. PubMed ID: 30392964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anoxic growth optimization for metal respiration and photobiological hydrogen production by arsenic-resistant Rhodopseudomonas and Rhodobacter species.
    Mohsin H; Asif A; Rehman Y
    J Basic Microbiol; 2019 Dec; 59(12):1208-1216. PubMed ID: 31613006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential Genome of the Metabolically Versatile Alphaproteobacterium Rhodopseudomonas palustris.
    Pechter KB; Gallagher L; Pyles H; Manoil CS; Harwood CS
    J Bacteriol; 2015 Dec; 198(5):867-76. PubMed ID: 26712940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.