These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33013818)

  • 21. The conserved CDC motif in the yeast iron regulator Aft2 mediates iron-sulfur cluster exchange and protein-protein interactions with Grx3 and Bol2.
    Li H; Outten CE
    J Biol Inorg Chem; 2019 Sep; 24(6):809-815. PubMed ID: 31493153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability.
    Pimentel C; Vicente C; Menezes RA; Caetano S; Carreto L; Rodrigues-Pousada C
    PLoS One; 2012; 7(5):e37434. PubMed ID: 22616008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Yap5 protein-regulated transcription of the TYW1 gene protects yeast from high iron toxicity.
    Li L; Jia X; Ward DM; Kaplan J
    J Biol Chem; 2011 Nov; 286(44):38488-38497. PubMed ID: 21917924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The yeast iron regulon is induced upon cobalt stress and crucial for cobalt tolerance.
    Stadler JA; Schweyen RJ
    J Biol Chem; 2002 Oct; 277(42):39649-54. PubMed ID: 12176980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Gcn2-eIF2α pathway connects iron and amino acid homeostasis in
    Caballero-Molada M; Planes MD; Benlloch H; Atares S; Naranjo MA; Serrano R
    Biochem J; 2018 Apr; 475(8):1523-1534. PubMed ID: 29626156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
    Gerwien F; Safyan A; Wisgott S; Hille F; Kaemmer P; Linde J; Brunke S; Kasper L; Hube B
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions.
    Castells-Roca L; Pijuan J; Ferrezuelo F; Bellí G; Herrero E
    PLoS One; 2016; 11(1):e0148204. PubMed ID: 26824473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sterol Composition Modulates the Response of
    Jordá T; Rozès N; Puig S
    J Fungi (Basel); 2021 Oct; 7(11):. PubMed ID: 34829190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study.
    Pagani MA; Casamayor A; Serrano R; Atrian S; Ariño J
    Mol Microbiol; 2007 Jul; 65(2):521-37. PubMed ID: 17630978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs.
    Castells-Roca L; Mühlenhoff U; Lill R; Herrero E; Bellí G
    Mol Microbiol; 2011 Jul; 81(1):232-48. PubMed ID: 21542867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system.
    Pérez-Sampietro M; Serra-Cardona A; Canadell D; Casas C; Ariño J; Herrero E
    Sci Rep; 2016 Sep; 6():32836. PubMed ID: 27618952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of the iron mobilization and oxidative stress regulons in the genomic response of yeast to hydroxyurea.
    Dubacq C; Chevalier A; Courbeyrette R; Petat C; Gidrol X; Mann C
    Mol Genet Genomics; 2006 Feb; 275(2):114-24. PubMed ID: 16328372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptation of
    Sorribes-Dauden R; Jordá T; Peris D; Martínez-Pastor MT; Puig S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Post-transcriptional regulation of gene expression in response to iron deficiency: co-ordinated metabolic reprogramming by yeast mRNA-binding proteins.
    Vergara SV; Thiele DJ
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1088-90. PubMed ID: 18793194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation.
    Puig S; Askeland E; Thiele DJ
    Cell; 2005 Jan; 120(1):99-110. PubMed ID: 15652485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional genomics of drug-induced ion homeostasis identifies a novel regulatory crosstalk of iron and zinc regulons in yeast.
    Landstetter N; Glaser W; Gregori C; Seipelt J; Kuchler K
    OMICS; 2010 Dec; 14(6):651-63. PubMed ID: 20695822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cisplatin upregulates Saccharomyces cerevisiae genes involved in iron homeostasis through activation of the iron insufficiency-responsive transcription factor Aft1.
    Kimura A; Ohashi K; Naganuma A
    J Cell Physiol; 2007 Feb; 210(2):378-84. PubMed ID: 17096368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast.
    Yamaguchi-Iwai Y; Stearman R; Dancis A; Klausner RD
    EMBO J; 1996 Jul; 15(13):3377-84. PubMed ID: 8670839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron-dependent metabolic remodeling in S. cerevisiae.
    Kaplan J; McVey Ward D; Crisp RJ; Philpott CC
    Biochim Biophys Acta; 2006 Jul; 1763(7):646-51. PubMed ID: 16697062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA repair activity of Fe(II)/2OG-dependent dioxygenases affected by low iron level in Saccharomyces cerevisiae.
    Deepa A; Naveena K; Anindya R
    FEMS Yeast Res; 2018 Mar; 18(2):. PubMed ID: 29438506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.