These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33013980)

  • 1. Chilling and Forcing From Cut Twigs-How to Simplify Phenological Experiments for Citizen Science.
    Menzel A; Yuan Y; Hamann A; Ohl U; Matiu M
    Front Plant Sci; 2020; 11():561413. PubMed ID: 33013980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.
    Primack RB; Laube J; Gallinat AS; Menzel A
    Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Winter warming offsets one half of the spring warming effects on leaf unfolding.
    Wang H; Dai J; Peñuelas J; Ge Q; Fu YH; Wu C
    Glob Chang Biol; 2022 Oct; 28(20):6033-6049. PubMed ID: 35899626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Interactive Effects of Chilling, Photoperiod, and Forcing Temperature on Flowering Phenology of Temperate Woody Plants.
    Wang H; Wang H; Ge Q; Dai J
    Front Plant Sci; 2020; 11():443. PubMed ID: 32373144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stronger Spring Phenological Advance in Future Warming Scenarios for Temperate Species With a Lower Chilling Sensitivity.
    Hu Z; Wang H; Dai J; Ge Q; Lin S
    Front Plant Sci; 2022; 13():830573. PubMed ID: 35665167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species.
    Harrington CA; Gould PJ
    Front Plant Sci; 2015; 6():120. PubMed ID: 25784922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region.
    Yang Y; Wu Z; Guo L; He HS; Ling Y; Wang L; Zong S; Na R; Du H; Li MH
    Sci Total Environ; 2020 Jul; 725():138323. PubMed ID: 32298892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades.
    Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y
    Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chilled to be forced: the best dose to wake up buds from winter dormancy.
    Baumgarten F; Zohner CM; Gessler A; Vitasse Y
    New Phytol; 2021 May; 230(4):1366-1377. PubMed ID: 33577087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of forest tree species' bud burst dates for different climate scenarios: chilling requirements and photo-period may limit bud burst advancement.
    Lange M; Schaber J; Marx A; Jäckel G; Badeck FW; Seppelt R; Doktor D
    Int J Biometeorol; 2016 Nov; 60(11):1711-1726. PubMed ID: 27059366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chilling outweighs photoperiod in preventing precocious spring development.
    Laube J; Sparks TH; Estrella N; Höfler J; Ankerst DP; Menzel A
    Glob Chang Biol; 2014 Jan; 20(1):170-82. PubMed ID: 24323535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Models of the spring phenology of boreal and temperate trees: Is there something missing?
    Linkosalo T; Häkkinen R; Hänninen H
    Tree Physiol; 2006 Sep; 26(9):1165-72. PubMed ID: 16740492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endodormancy release in Norway spruce grafts representing trees of different ages.
    Partanen J; Häkkinen R; Sutinen S; Viherä-Aarnio A; Zhang R; Hänninen H
    Tree Physiol; 2021 Apr; 41(4):631-643. PubMed ID: 32031217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures.
    Viherä-Aarnio A; Sutinen S; Partanen J; Häkkinen R
    Tree Physiol; 2014 May; 34(5):547-56. PubMed ID: 24876293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does Climate Warming Favour Early Season Species?
    Chu X; Man R; Zhang H; Yuan W; Tao J; Dang QL
    Front Plant Sci; 2021; 12():765351. PubMed ID: 34868164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason.
    Güsewell S; Furrer R; Gehrig R; Pietragalla B
    Glob Chang Biol; 2017 Dec; 23(12):5189-5202. PubMed ID: 28586135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana.
    Pop EW; Oberbauer SF; Starr G
    Oecologia; 2000 Aug; 124(2):176-184. PubMed ID: 28308177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the importance of day length in process-based models for the prediction of temperate spring flowering phenology.
    Kim S; Kim TK; Yoon S; Jang K; Chun JH; Won M; Lim JH; Kim HS
    Sci Total Environ; 2022 Oct; 843():156780. PubMed ID: 35724787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights on plant phenological response to temperature revealed from long-term widespread observations in China.
    Zhang H; Liu S; Regnier P; Yuan W
    Glob Chang Biol; 2018 May; 24(5):2066-2078. PubMed ID: 29197142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the ability of plants to plastically track temperature-mediated shifts in the spring phenological optimum.
    Tansey CJ; Hadfield JD; Phillimore AB
    Glob Chang Biol; 2017 Aug; 23(8):3321-3334. PubMed ID: 28185374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.