These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 33014565)
1. Optical volumetric projection with large NA objectives for fast high-resolution 3D imaging of neural signals. Meng Q; Xu T; Smith ZJ; Chu K Biomed Opt Express; 2020 Jul; 11(7):3769-3782. PubMed ID: 33014565 [TBL] [Abstract][Full Text] [Related]
2. Optical volumetric projection for fast 3D imaging through circularly symmetric pupil engineering. Cai B; Zhai X; Wang Z; Shen Y; Xu R; Smith ZJ; Wen Q; Chu K Biomed Opt Express; 2018 Feb; 9(2):437-446. PubMed ID: 29552384 [TBL] [Abstract][Full Text] [Related]
3. Pupil engineering for extended depth-of-field imaging in a fluorescence miniscope. Greene J; Xue Y; Alido J; Matlock A; Hu G; Kiliç K; Davison I; Tian L Neurophotonics; 2023 Oct; 10(4):044302. PubMed ID: 37215637 [TBL] [Abstract][Full Text] [Related]
4. Light-field microscopy for fast volumetric brain imaging. Zhang Z; Cong L; Bai L; Wang K J Neurosci Methods; 2021 Mar; 352():109083. PubMed ID: 33484746 [TBL] [Abstract][Full Text] [Related]
5. 50 Hz volumetric functional imaging with continuously adjustable depth of focus. Lu R; Tanimoto M; Koyama M; Ji N Biomed Opt Express; 2018 Apr; 9(4):1964-1976. PubMed ID: 29675332 [TBL] [Abstract][Full Text] [Related]
6. Extended depth-of-field microscopic imaging with a variable focus microscope objective. Liu S; Hua H Opt Express; 2011 Jan; 19(1):353-62. PubMed ID: 21263574 [TBL] [Abstract][Full Text] [Related]
7. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy. Yanny K; Antipa N; Liberti W; Dehaeck S; Monakhova K; Liu FL; Shen K; Ng R; Waller L Light Sci Appl; 2020; 9():171. PubMed ID: 33082940 [TBL] [Abstract][Full Text] [Related]
8. Holographic Imaging and Stimulation of Neural Circuits. Yang W; Yuste R Adv Exp Med Biol; 2021; 1293():613-639. PubMed ID: 33398846 [TBL] [Abstract][Full Text] [Related]
9. Temporally multiplexed dual-plane imaging of neural activity with four-dimensional precision. Onda M; Takeuchi RF; Isobe K; Suzuki T; Masaki Y; Morimoto N; Osakada F Neurosci Res; 2021 Oct; 171():9-18. PubMed ID: 33607170 [TBL] [Abstract][Full Text] [Related]
15. Automatically tracking neurons in a moving and deforming brain. Nguyen JP; Linder AN; Plummer GS; Shaevitz JW; Leifer AM PLoS Comput Biol; 2017 May; 13(5):e1005517. PubMed ID: 28545068 [TBL] [Abstract][Full Text] [Related]
16. Comparison of optical projection tomography and light-sheet fluorescence microscopy. Liu A; Xiao W; Li R; Liu L; Chen L J Microsc; 2019 Jul; 275(1):3-10. PubMed ID: 31012490 [TBL] [Abstract][Full Text] [Related]
17. Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy. King SV; Doblas A; Patwary N; Saavedra G; MartÃnez-Corral M; Preza C Appl Opt; 2015 Oct; 54(29):8587-95. PubMed ID: 26479791 [TBL] [Abstract][Full Text] [Related]
18. Multiplexed phase-space imaging for 3D fluorescence microscopy. Liu HY; Zhong J; Waller L Opt Express; 2017 Jun; 25(13):14986-14995. PubMed ID: 28788934 [TBL] [Abstract][Full Text] [Related]
19. An extended depth-of-field imaging system with a non-rotationally symmetric phase mask. Xie H; He L; Yang L; Mao C; Zhu M; Zhao M; Li J; Yang T Rev Sci Instrum; 2018 Oct; 89(10):103101. PubMed ID: 30399722 [TBL] [Abstract][Full Text] [Related]