BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33014685)

  • 1. Genome-wide microsatellites and species specific markers in genus
    Mathew D; Anju PS; Tom A; Johnson N; Lidia George M; Davis SP; Ravisankar V; Asha KN
    3 Biotech; 2020 Oct; 10(10):442. PubMed ID: 33014685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of genome sequence data in the design and testing of SSR markers for Phytophthora species.
    Schena L; Cardle L; Cooke DE
    BMC Genomics; 2008 Dec; 9():620. PubMed ID: 19099584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Genome-Wide Characterization of Microsatellites in Candida albicans and Candida dubliniensis Leading to the Development of Species-Specific Marker.
    Singh P; Nath R; Venkatesh V
    Public Health Genomics; 2021; 24(1-2):1-13. PubMed ID: 33401274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survey and analysis of microsatellites from transcript sequences in Phytophthora species: frequency, distribution, and potential as markers for the genus.
    Garnica DP; Pinzón AM; Quesada-Ocampo LM; Bernal AJ; Barreto E; Grünwald NJ; Restrepo S
    BMC Genomics; 2006 Sep; 7():245. PubMed ID: 17007642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomics approach to build a genome-wide database of high-quality, informative microsatellite markers: application on Phytophthora sojae, a soybean pathogen.
    Cai G; Fleury TJ; Zhang N
    Sci Rep; 2019 May; 9(1):7969. PubMed ID: 31138887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing genome-wide microsatellite markers of bamboo and their applications on molecular marker assisted taxonomy for accessions in the genus Phyllostachys.
    Zhao H; Yang L; Peng Z; Sun H; Yue X; Lou Y; Dong L; Wang L; Gao Z
    Sci Rep; 2015 Jan; 5():8018. PubMed ID: 25620112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing a taxonomic identification system of Phytophthora species based on microsatellites.
    del Castillo-Múnera J; Cárdenas M; Pinzón A; Castañeda A; Bernal AJ; Restrepo S
    Rev Iberoam Micol; 2013; 30(2):88-95. PubMed ID: 23202806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide characterization of microsatellites and marker development in the carcinogenic liver fluke Clonorchis sinensis.
    Nguyen TT; Arimatsu Y; Hong SJ; Brindley PJ; Blair D; Laha T; Sripa B
    Parasitol Res; 2015 Jun; 114(6):2263-72. PubMed ID: 25782682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of EST-SSR markers for genetic diversity analysis in coconut (Cocos nucifera L.).
    Preethi P; Rahman S; Naganeeswaran S; Sabana AA; Gangaraj KP; Jerard BA; Niral V; Rajesh MK
    Mol Biol Rep; 2020 Dec; 47(12):9385-9397. PubMed ID: 33215363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide characterization of microsatellites in cobia Rachycentron canadum (Linnaeus, 1766): Survey and analysis of their abundance and diversity.
    Tseng MC; Lee YH; Yen TB; Li SM
    J Fish Biol; 2024 Jan; 104(1):44-55. PubMed ID: 37658731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing.
    Schoebel CN; Brodbeck S; Buehler D; Cornejo C; Gajurel J; Hartikainen H; Keller D; Leys M; Ríčanová S; Segelbacher G; Werth S; Csencsics D
    J Evol Biol; 2013 Mar; 26(3):600-11. PubMed ID: 23331991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and validation of polymorphic microsatellite loci for the analysis of Phytophthora nicotianae populations.
    Biasi A; Martin F; Schena L
    J Microbiol Methods; 2015 Mar; 110():61-7. PubMed ID: 25601792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of new polymorphic microsatellite markers for three closely related plant-pathogenic Phytophthora species using 454-pyrosequencing and their potential applications.
    Schoebel CN; Jung E; Prospero S
    Phytopathology; 2013 Oct; 103(10):1020-7. PubMed ID: 23617336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley.
    La Rota M; Kantety RV; Yu JK; Sorrells ME
    BMC Genomics; 2005 Feb; 6():23. PubMed ID: 15720707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of microsatellite distribution in the genomes of Pteropus vampyrus and Miniopterus natalensis (Chiroptera).
    Shao W; Cai W; Qiao F; Lin Z; Wei L
    BMC Genom Data; 2023 Feb; 24(1):5. PubMed ID: 36782146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple sequence repeats for genetic studies of alpaca.
    Reed KM; Chaves LD
    Anim Biotechnol; 2008; 19(4):243-309. PubMed ID: 18855250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide mining and comparative analysis of microsatellites in three macaque species.
    Liu S; Hou W; Sun T; Xu Y; Li P; Yue B; Fan Z; Li J
    Mol Genet Genomics; 2017 Jun; 292(3):537-550. PubMed ID: 28160080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide mining of potentially-hypervariable microsatellites and validation of markers in Momordica charantia L.
    Ajinath LS; Mathew D
    Genetica; 2022 Feb; 150(1):77-85. PubMed ID: 34822037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole genome survey analysis and microsatellite motif identification of Sebastiscus marmoratus.
    Xu SY; Song N; Xiao SJ; Gao TX
    Biosci Rep; 2020 Feb; 40(2):. PubMed ID: 32090250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide mapping and characterization of microsatellites in the swamp eel genome.
    Li Z; Chen F; Huang C; Zheng W; Yu C; Cheng H; Zhou R
    Sci Rep; 2017 Jun; 7(1):3157. PubMed ID: 28600492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.