These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 33015150)
1. Exploring Heat-Response Mechanisms of MicroRNAs Based on Microarray Data of Rice Post-meiosis Panicle. Peng Y; Zhang X; Liu Y; Chen X Int J Genomics; 2020; 2020():7582612. PubMed ID: 33015150 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. Mangrauthia SK; Bhogireddy S; Agarwal S; Prasanth VV; Voleti SR; Neelamraju S; Subrahmanyam D J Exp Bot; 2017 Apr; 68(9):2399-2412. PubMed ID: 28407080 [TBL] [Abstract][Full Text] [Related]
3. In silico prediction of human genes as potential targets for rice miRNAs. Rakhmetullina A; Pyrkova A; Aisina D; Ivashchenko A Comput Biol Chem; 2020 Jun; 87():107305. PubMed ID: 32570176 [TBL] [Abstract][Full Text] [Related]
4. Integrating Small RNA Sequencing with QTL Mapping for Identification of miRNAs and Their Target Genes Associated with Heat Tolerance at the Flowering Stage in Rice. Liu Q; Yang T; Yu T; Zhang S; Mao X; Zhao J; Wang X; Dong J; Liu B Front Plant Sci; 2017; 8():43. PubMed ID: 28174587 [TBL] [Abstract][Full Text] [Related]
5. Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice. Sharma D; Tiwari M; Lakhwani D; Tripathi RD; Trivedi PK Metallomics; 2015 Jan; 7(1):174-87. PubMed ID: 25474357 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice. Xu X; Bai H; Liu C; Chen E; Chen Q; Zhuang J; Shen B PLoS One; 2014; 9(12):e114313. PubMed ID: 25479006 [TBL] [Abstract][Full Text] [Related]
7. MicroRNAs Are Intensively Regulated during Induction of Somatic Embryogenesis in Arabidopsis. Szyrajew K; Bielewicz D; Dolata J; Wójcik AM; Nowak K; Szczygieł-Sommer A; Szweykowska-Kulinska Z; Jarmolowski A; Gaj MD Front Plant Sci; 2017; 8():18. PubMed ID: 28167951 [TBL] [Abstract][Full Text] [Related]
8. Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L. Li D; Liu Z; Gao L; Wang L; Gao M; Jiao Z; Qiao H; Yang J; Chen M; Yao L; Liu R; Kan Y PLoS One; 2016; 11(4):e0153168. PubMed ID: 27082634 [TBL] [Abstract][Full Text] [Related]
9. Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. Srivastava S; Srivastava AK; Suprasanna P; D'Souza SF J Exp Bot; 2013 Jan; 64(1):303-15. PubMed ID: 23162117 [TBL] [Abstract][Full Text] [Related]
10. Identification and expression profiles of putative leaf growth related microRNAs in maize (Zea mays L.) hybrid ADA313. Aydinoglu F; Lucas SJ Gene; 2019 Mar; 690():57-67. PubMed ID: 30597233 [TBL] [Abstract][Full Text] [Related]
12. Identification of functionally important microRNAs from rice inflorescence at heading stage of a qDTY4.1-QTL bearing Near Isogenic Line under drought conditions. Cheah BH; Jadhao S; Vasudevan M; Wickneswari R; Nadarajah K PLoS One; 2017; 12(10):e0186382. PubMed ID: 29045473 [TBL] [Abstract][Full Text] [Related]
13. Expression Alteration of Candidate Rice MiRNAs in Response to Sheath Blight Disease. Talesh Sasani S; M Soltani B; Mehrabi R; Fereidoun Padasht-Dehkaei HS Iran J Biotechnol; 2020 Oct; 18(4):e2451. PubMed ID: 34056017 [TBL] [Abstract][Full Text] [Related]
14. High-Throughput Sequencing of Small RNA Transcriptomes in Maize Kernel Identifies miRNAs Involved in Embryo and Endosperm Development. Xing L; Zhu M; Zhang M; Li W; Jiang H; Zou J; Wang L; Xu M Genes (Basel); 2017 Dec; 8(12):. PubMed ID: 29240690 [TBL] [Abstract][Full Text] [Related]
15. Identification of potential miRNA-mRNA regulatory network contributing to pathogenesis of HBV-related HCC. Lou W; Liu J; Ding B; Chen D; Xu L; Ding J; Jiang D; Zhou L; Zheng S; Fan W J Transl Med; 2019 Jan; 17(1):7. PubMed ID: 30602391 [TBL] [Abstract][Full Text] [Related]
16. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. Cheah BH; Nadarajah K; Divate MD; Wickneswari R BMC Genomics; 2015 Sep; 16(1):692. PubMed ID: 26369665 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Yang C; Li D; Mao D; Liu X; Ji C; Li X; Zhao X; Cheng Z; Chen C; Zhu L Plant Cell Environ; 2013 Dec; 36(12):2207-18. PubMed ID: 23651319 [TBL] [Abstract][Full Text] [Related]
18. Identification of Rapeseed MicroRNAs Involved in Early Stage Seed Germination under Salt and Drought Stresses. Jian H; Wang J; Wang T; Wei L; Li J; Liu L Front Plant Sci; 2016; 7():658. PubMed ID: 27242859 [TBL] [Abstract][Full Text] [Related]
19. Identification and characterization of microRNAs in the liver of rainbow trout in response to heat stress by high-throughput sequencing. Huang J; Li Y; Ma F; Kang Y; Liu Z; Wang J Gene; 2018 Dec; 679():274-281. PubMed ID: 30205173 [TBL] [Abstract][Full Text] [Related]
20. Identification and expression analysis of conserved microRNAs during short and prolonged chromium stress in rice (Oryza sativa). Dubey S; Saxena S; Chauhan AS; Mathur P; Rani V; Chakrabaroty D Environ Sci Pollut Res Int; 2020 Jan; 27(1):380-390. PubMed ID: 31792790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]