These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33015382)

  • 21. Rheological measurements as a tool for monitoring the performance of high pressure and high temperature treatment of sewage sludge.
    Hii K; Parthasarathy R; Baroutian S; Gapes DJ; Eshtiaghi N
    Water Res; 2017 May; 114():254-263. PubMed ID: 28254643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viscoelastic properties of the small intestinal and caecal contents of the chicken.
    Takahashi T; Goto M; Sakata T
    Br J Nutr; 2004 Jun; 91(6):867-72. PubMed ID: 15182390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature dependent steady and dynamic oscillatory shear rheological characteristics of Indian cow milk (
    Duhan N; Sahu JK; Naik SN
    J Food Sci Technol; 2018 Oct; 55(10):4059-4066. PubMed ID: 30228404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A highly accurate and consistent microfluidic viscometer for continuous blood viscosity measurement.
    Kang YJ; Yoon SY; Lee KH; Yang S
    Artif Organs; 2010 Nov; 34(11):944-9. PubMed ID: 20946281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A modified Casson equation to characterize blood rheology for hypertension.
    Shi YD; Artmann G; Agosti R; Longhini E
    Clin Hemorheol Microcirc; 1998 Oct; 19(2):115-27. PubMed ID: 9849924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oscillatory and steady shear rheology of gellan/dextran blends.
    Ahmad NH; Ahmed J; Hashim DM; Manap YA; Mustafa S
    J Food Sci Technol; 2015 May; 52(5):2902-9. PubMed ID: 25892789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into the rheological behaviors evolution of alginate dialdehyde crosslinked collagen solutions evaluated by numerical models.
    Zhu S; Yu X; Xiong S; Liu R; Gu Z; You J; Yin T; Hu Y
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():727-737. PubMed ID: 28576043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of falling-needle rheometry to highly concentrated DNA solutions.
    Burger J; Yamamoto H; Suzuki T; Laesecke A
    Biorheology; 2014; 51(1):29-45. PubMed ID: 24732286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms.
    Suzuki T; Takao H; Suzuki T; Suzuki T; Masuda S; Dahmani C; Watanabe M; Mamori H; Ishibashi T; Yamamoto H; Yamamoto M; Murayama Y
    Technol Health Care; 2017; 25(1):37-47. PubMed ID: 27497460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Blood viscometer applying electromagnetically spinning method.
    Fukunaga K; Onuki M; Ohtsuka Y; Hirano T; Sakai K; Ohgoe Y; Katoh A; Yaguchi T; Funakubo A; Fukui Y
    J Artif Organs; 2013 Sep; 16(3):359-67. PubMed ID: 23575974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The new low shear viscosimeter LS300 for determination of viscosities of Newtonian and non-Newtonian fluids.
    Ruef P; Gehm J; Gehm L; Felbinger C; Pöschl J; Kuss N
    Gen Physiol Biophys; 2014; 33(3):281-4. PubMed ID: 24968408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational and Experimental Investigation of Biofilm Disruption Dynamics Induced by High-Velocity Gas Jet Impingement.
    Prades L; Fabbri S; Dorado AD; Gamisans X; Stoodley P; Picioreanu C
    mBio; 2020 Jan; 11(1):. PubMed ID: 31911489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-Newtonian Characteristics of Gochujang and Chogochujang at Different Temperatures.
    Choi JE; Lee JH
    Prev Nutr Food Sci; 2017 Mar; 22(1):62-66. PubMed ID: 28401090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the Response of a Herschel-Bulkley Fluid Due to a Moving Plate.
    Konan NA; Rosenbaum E; Massoudi M
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: A comparative study.
    Tiwari A; Chauhan SS
    Microvasc Res; 2019 May; 123():99-110. PubMed ID: 30639139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of non-Newtonian viscosity of blood on microvascular impairment.
    Moh JH; Cho YI; Cho DJ; Kim D; Banerjee RK
    Clin Hemorheol Microcirc; 2014; 57(2):111-8. PubMed ID: 24584322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of high-hydrostatic pressure and temperature on rheological characteristics of glycomacropeptide.
    Ahmed J; Ramaswamy HS
    J Dairy Sci; 2003 May; 86(5):1535-40. PubMed ID: 12778563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variations in pulsatile flow around stenosed microchannel depending on viscosity.
    Hong H; Song JM; Yeom E
    PLoS One; 2019; 14(1):e0210993. PubMed ID: 30677055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The flow properties of honey-malt spread.
    Dianat M; Taghizadeh M; Shahidi F; Razavi S
    Food Sci Technol Int; 2017 Jul; 23(5):415-425. PubMed ID: 28675972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.