BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33015386)

  • 1. Performance of geotextile-based slow sand filter media in removing total coli for drinking water treatment using system dynamics modelling.
    Fitriani N; Kusuma MN; Wirjodirdjo B; Hadi W; Hermana J; Ni'matuzahroh ; Kurniawan SB; Abdullah SRS; Mohamed RMSR
    Heliyon; 2020 Sep; 6(9):e04967. PubMed ID: 33015386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of
    Matuzahroh N; Fitriani N; Ardiyanti PE; Kuncoro EP; Budiyanto WD; Isnadina DRM; Wahyudianto FE; Radin Mohamed RMS
    Heliyon; 2020 Apr; 6(4):e03736. PubMed ID: 32280804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of PPCPs on the performance of intermittently operated slow sand filters for household water purification.
    Pompei CME; Ciric L; Canales M; Karu K; Vieira EM; Campos LC
    Sci Total Environ; 2017 Mar; 581-582():174-185. PubMed ID: 28041695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of slow sand filter cleaning process type on filter media biomass: backwashing versus scraping.
    de Souza FH; Roecker PB; Silveira DD; Sens ML; Campos LC
    Water Res; 2021 Feb; 189():116581. PubMed ID: 33186813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass characterization of slow sand filtration schmutzdecke and its effects on filter performance.
    Muhammad N; Hooke AM
    Environ Technol; 2003 Jan; 24(1):43-50. PubMed ID: 12641251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomass development in slow sand filters.
    Campos LC; Su MF; Graham NJ; Smith SR
    Water Res; 2002 Nov; 36(18):4543-51. PubMed ID: 12418657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of deeper layers in slow sand filters to pathogens removal.
    Trikannad SA; van Halem D; Foppen JW; van der Hoek JP
    Water Res; 2023 Jun; 237():119994. PubMed ID: 37116371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filter media depth and its effect on the efficiency of Household Slow Sand Filter in continuous flow.
    Freitas BLS; Terin UC; Fava NMN; Sabogal-Paz LP
    J Environ Manage; 2021 Jun; 288():112412. PubMed ID: 33823447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shedding light on the total and active core microbiomes in slow sand filters for drinking water production.
    Bai X; Dinkla IJT; Muyzer G
    Water Res; 2023 Sep; 243():120404. PubMed ID: 37586176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Household slow sand filter to treat groundwater with microbiological risks in rural communities.
    Andreoli FC; Sabogal-Paz LP
    Water Res; 2020 Nov; 186():116352. PubMed ID: 32916617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: experimental investigation and modeling.
    Jenkins MW; Tiwari SK; Darby J
    Water Res; 2011 Nov; 45(18):6227-39. PubMed ID: 21974872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Household slow sand filter efficiency with
    Lamon AW; Faria Maciel PM; Campos JR; Corbi JJ; Dunlop PSM; Fernandez-Ibañez P; Anthony Byrne J; Sabogal-Paz LP
    Environ Technol; 2022 Nov; 43(26):4042-4053. PubMed ID: 34092193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow sand filtration of raw wastewater using biochar as an alternative filtration media.
    Kaetzl K; Lübken M; Nettmann E; Krimmler S; Wichern M
    Sci Rep; 2020 Jan; 10(1):1229. PubMed ID: 31988298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring biofilm function in new and matured full-scale slow sand filters using flow cytometric histogram image comparison (CHIC).
    Chan S; Pullerits K; Riechelmann J; Persson KM; Rådström P; Paul CJ
    Water Res; 2018 Jul; 138():27-36. PubMed ID: 29571086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of roughing and slow sand filter modified with slag and clinker ash for removal of microorganisms from secondary effluent.
    Letshwenyo MW; Lebogang L
    Environ Technol; 2020 Sep; 41(23):3004-3015. PubMed ID: 30871421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the colmation layer to the elimination of coliphages by slow sand filtration.
    Dizer H; Grützmacher G; Bartel H; Wiese HB; Szewzyk R; López-Pila JM
    Water Sci Technol; 2004; 50(2):211-4. PubMed ID: 15344793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model for removal of human pathogenic viruses and bacteria by slow sand filtration under variable operational conditions.
    Schijven JF; van den Berg HH; Colin M; Dullemont Y; Hijnen WA; Magic-Knezev A; Oorthuizen WA; Wubbels G
    Water Res; 2013 May; 47(7):2592-602. PubMed ID: 23490102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of a multi-barrier household system for surface water treatment combining a household slow sand filter to a Mesita Azul® ultraviolet disinfection device.
    Garcia LAT; Silva FL; Freitas BLS; Fava NNM; Reygadas F; Sabogal-Paz LP
    J Environ Manage; 2022 Nov; 321():115948. PubMed ID: 35985271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective elimination of bacterial faecal indicators in the Schmutzdecke of slow sand filtration columns.
    Pfannes KR; Langenbach KM; Pilloni G; Stührmann T; Euringer K; Lueders T; Neu TR; Müller JA; Kästner M; Meckenstock RU
    Appl Microbiol Biotechnol; 2015 Dec; 99(23):10323-32. PubMed ID: 26264137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Trihalomethanes by Dual Filtering Media (GAC-Sand) at El-Manshia Water Purification Plant.
    Mohamed MA; Hassan AH; El Messiry MA; Hazzaa RA
    J Egypt Public Health Assoc; 2006; 81(3-4):241-58. PubMed ID: 17382063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.