BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33015455)

  • 1. Removal of Drugs in Polluted Waters with Char Obtained by Pyrolysis of Hair Waste from the Tannery Process.
    Rodríguez F; Montoya-Ruiz C; Estiati I; Saldarriaga JF
    ACS Omega; 2020 Sep; 5(38):24389-24402. PubMed ID: 33015455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in chlorinated organic pollutants and heavy metal content of sediments during pyrolysis.
    Hu Z; Navarro R; Nomura N; Kong H; Wijesekara S; Matsumura M
    Environ Sci Pollut Res Int; 2007 Jan; 14(1):12-8. PubMed ID: 17352123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.
    Aboulkas A; Hammani H; El Achaby M; Bilal E; Barakat A; El Harfi K
    Bioresour Technol; 2017 Nov; 243():400-408. PubMed ID: 28688323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of temperature on the physicochemical properties of products of pyrolysis of leather-tannery waste.
    Kluska J; Ochnio M; Kardaś D; Heda Ł
    Waste Manag; 2019 Apr; 88():248-256. PubMed ID: 31079637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evaluation of immobilization behavior and potential ecological risk of heavy metals in bio-char with different alkaline activation.
    Zhao B; Xu X; Liu W; Zhang R; Cui M; Liu J; Zhang W
    Environ Sci Pollut Res Int; 2021 May; 28(17):21396-21410. PubMed ID: 33411270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential Valorization of Waste Tires as Activated Carbon-Based Adsorbent for Organic Contaminants Removal.
    Frikha K; Limousy L; Pons Claret J; Vaulot C; Pérez KF; Garcia BC; Bennici S
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste.
    Hoslett J; Ghazal H; Ahmad D; Jouhara H
    Sci Total Environ; 2019 Jul; 673():777-789. PubMed ID: 31003106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics.
    Zhao B; Xu X; Zeng F; Li H; Chen X
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19423-19435. PubMed ID: 29728972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of chromium speciation and organic matter during low-temperature pyrolysis of tannery sludge.
    Zhou J; Ma H; Gao M; Sun W; Zhu C; Chen X
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2495-2505. PubMed ID: 29127634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal.
    Alkurdi SSA; Al-Juboori RA; Bundschuh J; Bowtell L; McKnight S
    Environ Pollut; 2020 Jul; 262():114221. PubMed ID: 32120255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stabilization of tannery sludge and the character of humic acid-like during low temperature pyrolysis.
    Ma H; Gao M; Hua L; Chao H; Xu J
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16791-802. PubMed ID: 26092361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of an integrated pyrolysis and chemical leaching process for pulper waste conversion into coal, hydrogen and chemical flocculating agent.
    Salimbeni A; Di Bianca M; Maria Rizzo A; Chiaramonti D
    Waste Manag; 2024 Feb; 174():549-557. PubMed ID: 38134542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steam assisted slow pyrolysis of contaminated biomasses: Effect of plant parts and process temperature on heavy metals fate.
    Grottola CM; Giudicianni P; Pindozzi S; Stanzione F; Faugno S; Fagnano M; Fiorentino N; Ragucci R
    Waste Manag; 2019 Feb; 85():232-241. PubMed ID: 30803577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis of wastewater sludge and composted organic fines from municipal solid waste: laboratory reactor characterisation and product distribution.
    Agar DA; Kwapinska M; Leahy JJ
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35874-35882. PubMed ID: 29484618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tar reduction in pyrolysis vapours from biomass over a hot char bed.
    Gilbert P; Ryu C; Sharifi V; Swithenbank J
    Bioresour Technol; 2009 Dec; 100(23):6045-51. PubMed ID: 19604685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Migration characteristics of chlorine during pyrolysis of municipal solid waste pellets.
    Gao P; Hu Z; Sheng Y; Pan W; Tang L; Chen Y; Chen X; Wang F
    Waste Manag; 2023 Dec; 172():208-215. PubMed ID: 37924596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behaviour of waste polypropylene pyrolysis char-based epoxy composite materials.
    Sogancioglu M; Yel E; Ahmetli G
    Environ Sci Pollut Res Int; 2020 Feb; 27(4):3871-3884. PubMed ID: 31823261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Char from the co-pyrolysis of Eucalyptus wood and low-density polyethylene for use as high-quality fuel: Influence of process parameters.
    Samal B; Vanapalli KR; Dubey BK; Bhattacharya J; Chandra S; Medha I
    Sci Total Environ; 2021 Nov; 794():148723. PubMed ID: 34217075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-energy and chemical-free activation of pyrolytic tire char and its adsorption characteristics.
    Quek A; Balasubramanian R
    J Air Waste Manag Assoc; 2009 Jun; 59(6):747-56. PubMed ID: 19603742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.