These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33015585)

  • 1. Influence of testing environment and loading rate on intervertebral disc compressive mechanics: An assessment of repeatability at three different laboratories.
    Newell N; Rivera Tapia D; Rahman T; Lim S; O'Connell GD; Holsgrove TP
    JOR Spine; 2020 Sep; 3(3):e21110. PubMed ID: 33015585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of hydration on the stiffness of intervertebral discs in an ovine model.
    Costi JJ; Hearn TC; Fazzalari NL
    Clin Biomech (Bristol, Avon); 2002 Jul; 17(6):446-55. PubMed ID: 12135546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Height and torsional stiffness are most sensitive to annular injury in large animal intervertebral discs.
    Michalek AJ; Iatridis JC
    Spine J; 2012 May; 12(5):425-32. PubMed ID: 22627276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.
    Bezci SE; Klineberg EO; O'Connell GD
    J Mech Behav Biomed Mater; 2018 Jan; 77():353-359. PubMed ID: 28965042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compression-induced changes in intervertebral disc properties in a rat tail model.
    Iatridis JC; Mente PL; Stokes IA; Aronsson DD; Alini M
    Spine (Phila Pa 1976); 1999 May; 24(10):996-1002. PubMed ID: 10332792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load.
    Zirbel SA; Stolworthy DK; Howell LL; Bowden AE
    Spine J; 2013 Sep; 13(9):1134-47. PubMed ID: 23507531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force.
    Callaghan JP; McGill SM
    Clin Biomech (Bristol, Avon); 2001 Jan; 16(1):28-37. PubMed ID: 11114441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The facet joint loading profile of a cervical intervertebral disc replacement incorporating a novel saddle-shaped articulation.
    Stieber JR; Quirno M; Kang M; Valdevit A; Errico TJ
    J Spinal Disord Tech; 2011 Oct; 24(7):432-6. PubMed ID: 21336178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotomy reduces the effects of cyclic compressive loading with unloaded recovery on human intervertebral discs.
    Showalter BL; Malhotra NR; Vresilovic EJ; Elliott DM
    J Biomech; 2014 Aug; 47(11):2633-40. PubMed ID: 24957922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics.
    Gooyers CE; McMillan RD; Howarth SJ; Callaghan JP
    Spine (Phila Pa 1976); 2012 Aug; 37(17):E1023-9. PubMed ID: 22472807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the influence of species, intervertebral disc height and Pfirrmann classification on failure load of an injured disc using a novel disc herniation model.
    Virk S; Meyers KN; Lafage V; Maher SA; Chen T
    Spine J; 2021 Apr; 21(4):698-707. PubMed ID: 33157322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Test-retest repeatability of lumbar sagittal alignment and disc height measurements with or without axial loading: a computed tomography study.
    Hioki A; Miyamoto K; Shimizu K; Inoue N
    J Spinal Disord Tech; 2011 Apr; 24(2):93-8. PubMed ID: 21430497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic, six-axis stiffness matrix characteristics of the intact intervertebral disc and a disc replacement.
    Holsgrove TP; Gill HS; Miles AW; Gheduzzi S
    Proc Inst Mech Eng H; 2015 Nov; 229(11):769-77. PubMed ID: 26503838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study.
    Lotz JC; Colliou OK; Chin JR; Duncan NA; Liebenberg E
    Spine (Phila Pa 1976); 1998 Dec; 23(23):2493-506. PubMed ID: 9854748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration.
    Kroeber MW; Unglaub F; Wang H; Schmid C; Thomsen M; Nerlich A; Richter W
    Spine (Phila Pa 1976); 2002 Dec; 27(23):2684-90. PubMed ID: 12461394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Complex Loading Conditions on Intervertebral Disc Failure.
    Berger-Roscher N; Casaroli G; Rasche V; Villa T; Galbusera F; Wilke HJ
    Spine (Phila Pa 1976); 2017 Jan; 42(2):E78-E85. PubMed ID: 27187053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic compression effects on intervertebral disc mechanics and biology.
    Korecki CL; MacLean JJ; Iatridis JC
    Spine (Phila Pa 1976); 2008 Jun; 33(13):1403-9. PubMed ID: 18520935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.