These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 33015587)
1. Benzo-Dipteridine Derivatives as Organic Cathodes for Li- and Na-ion Batteries. Cariello M; Johnston B; Bhosale M; Amores M; Wilson E; McCarron LJ; Wilson C; Corr SA; Cooke G ACS Appl Energy Mater; 2020 Sep; 3(9):8302-8308. PubMed ID: 33015587 [TBL] [Abstract][Full Text] [Related]
2. A Quinone-Based Cathode Material for High-Performance Organic Lithium and Sodium Batteries. Wilkinson D; Bhosale M; Amores M; Naresh G; Cussen SA; Cooke G ACS Appl Energy Mater; 2021 Nov; 4(11):12084-12090. PubMed ID: 34841204 [TBL] [Abstract][Full Text] [Related]
3. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries. Xu X; Ji S; Gu M; Liu J ACS Appl Mater Interfaces; 2015 Sep; 7(37):20957-64. PubMed ID: 26336101 [TBL] [Abstract][Full Text] [Related]
4. A High Rate and Stable Hybrid Li/Na-Ion Battery Based on a Hydrated Molten Inorganic Salt Electrolyte. Wang Z; Xu Y; Peng J; Ou M; Wei P; Fang C; Li Q; Huang J; Han J; Huang Y Small; 2021 Oct; 17(40):e2101650. PubMed ID: 34453487 [TBL] [Abstract][Full Text] [Related]
5. Highly Stable and High Rate-Performance Na-Ion Batteries Using Polyanionic Anthraquinone as the Organic Cathode. Tang W; Liang R; Li D; Yu Q; Hu J; Cao B; Fan C ChemSusChem; 2019 May; 12(10):2181-2185. PubMed ID: 30896083 [TBL] [Abstract][Full Text] [Related]
6. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices. Xu X; Yan M; Tian X; Yang C; Shi M; Wei Q; Xu L; Mai L Nano Lett; 2015 Jun; 15(6):3879-84. PubMed ID: 25989463 [TBL] [Abstract][Full Text] [Related]
7. Few-Layered Fluorinated Triazine-Based Covalent Organic Nanosheets for High-Performance Alkali Organic Batteries. Zhang H; Sun W; Chen X; Wang Y ACS Nano; 2019 Dec; 13(12):14252-14261. PubMed ID: 31794178 [TBL] [Abstract][Full Text] [Related]
8. High-Safety and High-Energy-Density Lithium Metal Batteries in a Novel Ionic-Liquid Electrolyte. Sun H; Zhu G; Zhu Y; Lin MC; Chen H; Li YY; Hung WH; Zhou B; Wang X; Bai Y; Gu M; Huang CL; Tai HC; Xu X; Angell M; Shyue JJ; Dai H Adv Mater; 2020 Jul; 32(26):e2001741. PubMed ID: 32449260 [TBL] [Abstract][Full Text] [Related]
9. One-Step Catalytic Synthesis of CuO/Cu2O in a Graphitized Porous C Matrix Derived from the Cu-Based Metal-Organic Framework for Li- and Na-Ion Batteries. Kim AY; Kim MK; Cho K; Woo JY; Lee Y; Han SH; Byun D; Choi W; Lee JK ACS Appl Mater Interfaces; 2016 Aug; 8(30):19514-23. PubMed ID: 27398693 [TBL] [Abstract][Full Text] [Related]
10. Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li-Ion Batteries. Luo C; Ji X; Hou S; Eidson N; Fan X; Liang Y; Deng T; Jiang J; Wang C Adv Mater; 2018 Jun; 30(23):e1706498. PubMed ID: 29687487 [TBL] [Abstract][Full Text] [Related]
11. High-Capacity Mg-Organic Batteries Based on Nanostructured Rhodizonate Salts Activated by Mg-Li Dual-Salt Electrolyte. Tian J; Cao D; Zhou X; Hu J; Huang M; Li C ACS Nano; 2018 Apr; 12(4):3424-3435. PubMed ID: 29617114 [TBL] [Abstract][Full Text] [Related]
12. Flexible Overoxidized Polypyrrole Films with Orderly Structure as High-Performance Anodes for Li- and Na-Ion Batteries. Yuan T; Ruan J; Zhang W; Tan Z; Yang J; Ma ZF; Zheng S ACS Appl Mater Interfaces; 2016 Dec; 8(51):35114-35122. PubMed ID: 27990797 [TBL] [Abstract][Full Text] [Related]
13. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
14. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. Luo C; Xu Y; Zhu Y; Liu Y; Zheng S; Liu Y; Langrock A; Wang C ACS Nano; 2013 Sep; 7(9):8003-10. PubMed ID: 23944942 [TBL] [Abstract][Full Text] [Related]
15. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries. Luo C; Xu GL; Ji X; Hou S; Chen L; Wang F; Jiang J; Chen Z; Ren Y; Amine K; Wang C Angew Chem Int Ed Engl; 2018 Mar; 57(11):2879-2883. PubMed ID: 29378088 [TBL] [Abstract][Full Text] [Related]
16. Diamino-Substituted Quinones as Cathodes for Lithium-Ion Batteries. Hiltermann TW; Sarkar S; Thangadurai V; Sutherland TC ACS Appl Mater Interfaces; 2024 Feb; 16(7):8580-8588. PubMed ID: 38320233 [TBL] [Abstract][Full Text] [Related]
17. Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries. Chai Y; Du Y; Li L; Wang N Nanotechnology; 2020 May; 31(21):215402. PubMed ID: 31986495 [TBL] [Abstract][Full Text] [Related]
18. Al-based metal organic framework derived self-assembled carbon nanosheets as innovative anodes for Li- and Na-ion batteries. Zeng XR; Jin WW; Li HJ; Inguva S; Zhang Q; Zeng SZ; Xu GZ; Zou JZ Nanotechnology; 2020 Apr; 31(15):155602. PubMed ID: 31860881 [TBL] [Abstract][Full Text] [Related]
19. Rechargeable Mg-M (M = Li, Na and K) dual-metal-ion batteries based on a Berlin green cathode and a metallic Mg anode. Zhang Y; Shen J; Li X; Chen Z; Cao SA; Li T; Xu F Phys Chem Chem Phys; 2019 Sep; 21(36):20269-20275. PubMed ID: 31490519 [TBL] [Abstract][Full Text] [Related]
20. NASICON-Type Mg Zhao Y; Wei Z; Pang Q; Wei Y; Cai Y; Fu Q; Du F; Sarapulova A; Ehrenberg H; Liu B; Chen G ACS Appl Mater Interfaces; 2017 Feb; 9(5):4709-4718. PubMed ID: 28098442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]