These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 330163)

  • 41. Genetic and biochemical studies of nitrate reduction in Aspergillus nidulans.
    Pateman JA; Rever BM; Cove DJ
    Biochem J; 1967 Jul; 104(1):103-11. PubMed ID: 4382427
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selenium-containing xanthine dehydrogenase from Eubacterium barkeri.
    Schräder T; Rienhöfer A; Andreesen JR
    Eur J Biochem; 1999 Sep; 264(3):862-71. PubMed ID: 10491134
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of xanthine dehydrogenase from the anaerobic bacterium Veillonella atypica and identification of a molybdopterin-cytosine-dinucleotide-containing molybdenum cofactor.
    Gremer L; Meyer O
    Eur J Biochem; 1996 Jun; 238(3):862-6. PubMed ID: 8706691
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The multimeric nature of NADPH-nitrate reductase from Aspergillus nidulans.
    Downey RJ
    Microbios; 1973; 7(25):53-60. PubMed ID: 4144577
    [No Abstract]   [Full Text] [Related]  

  • 45. A convener role for the cnxH gene specified component in the NADPH-nitrate reductase fron Aspergillus nidulans.
    Downey R; Wiehl P
    Mol Cell Biochem; 1984; 59(1-2):155-63. PubMed ID: 6423961
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molybdate metabolism in Aspergillus nidulans. I. Mutations affecting nitrate reductase and-or xanthine dehydrogenase.
    Arst HN; MacDonald DW; Cove DJ
    Mol Gen Genet; 1970; 108(2):129-45. PubMed ID: 5475567
    [No Abstract]   [Full Text] [Related]  

  • 47. Effect of NADH on hypoxanthine hydroxylation by native NAD+-dependent xanthine oxidoreductase of rat liver, and the possible biological role of this effect.
    Kamiński ZW; Jezewska MM
    Biochem J; 1981 Dec; 200(3):597-603. PubMed ID: 6952874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of molybdenum in formation of the NADPH-nitrate reductase by Aspergillus nidulans.
    Downey RJ
    Biochem Biophys Res Commun; 1973 Feb; 50(3):920-5. PubMed ID: 4144009
    [No Abstract]   [Full Text] [Related]  

  • 49. Altered specificity mutations define residues essential for substrate positioning in xanthine dehydrogenase.
    Glatigny A; Hof P; Romão MJ; Huber R; Scazzocchio C
    J Mol Biol; 1998 May; 278(2):431-8. PubMed ID: 9571062
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Occurrence of xanthine dehydrogenase in Chlamydomonas reinhardii: A common cofactor shared by xanthine dehydrogenase and nitrate reductase.
    Fernández E; Cárdenas J
    Planta; 1981 Nov; 153(3):254-7. PubMed ID: 24276829
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Purification and characterization of a prokaryotic xanthine dehydrogenase from Comamonas acidovorans.
    Xiang Q; Edmondson DE
    Biochemistry; 1996 Apr; 35(17):5441-50. PubMed ID: 8611534
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The alternative D-galactose degrading pathway of Aspergillus nidulans proceeds via L-sorbose.
    Fekete E; Karaffa L; Sándor E; Bányai I; Seiboth B; Gyémánt G; Sepsi A; Szentirmai A; Kubicek CP
    Arch Microbiol; 2004 Jan; 181(1):35-44. PubMed ID: 14624333
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A COMMON CO-FACTOR FOR NITRATE REDUCTASE AND XANTHINE DEHYDROGENASE WHICH ALSO REGULATES THE SYNTHESIS OF NITRATE REDUCTASE.
    PATEMAN JA; COVE DJ; REVER BM; ROBERTS DB
    Nature; 1964 Jan; 201():58-60. PubMed ID: 14085568
    [No Abstract]   [Full Text] [Related]  

  • 54. Intermediate dehydrogenase-oxidase form of xanthine oxidoreductase in rat liver.
    Kamiński ZW; Jezewska MM
    Biochem J; 1979 Jul; 181(1):177-82. PubMed ID: 226081
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonas putida Fu1: two molybdenum-containing dehydrogenases of novel structural composition.
    Koenig K; Andreesen JR
    J Bacteriol; 1990 Oct; 172(10):5999-6009. PubMed ID: 2170335
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molybdenum cofactor: a compound in the in vitro activation of both nitrate reductase and trimethylamine-N-oxide reductase activities in Escherichia coli K12.
    Silvestro A; Pommier J; Giordano G
    Biochim Biophys Acta; 1986 Aug; 872(3):243-52. PubMed ID: 3524687
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An analysis of xanthine dehydrogenase negative mutants of the rosy locus in Drosophila melanogaster.
    Girton LE; Lo RY; Bell JB
    Can J Genet Cytol; 1979 Sep; 21(3):379-89. PubMed ID: 93503
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Decreased concentration of xanthine dehydrogenase (EC 1.1.1.204) in rat hepatomas.
    Ikegami T; Natsumeda Y; Weber G
    Cancer Res; 1986 Aug; 46(8):3838-41. PubMed ID: 3460692
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biochemical and genetical characterization of nitrate reductase deficient mutants of Petunia.
    Steffen A; Schieder O
    Plant Cell Rep; 1984 Aug; 3(4):134-7. PubMed ID: 24253469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evidence for the existence of a tyrosyl residue in the nicotinamide adenine dinucleotide binding site of chicken liver xanthine dehydrogenase.
    Nishino T; Nishino T
    Biochemistry; 1987 Jun; 26(11):3068-72. PubMed ID: 3475129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.