These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33016431)

  • 1. Mercury dynamics in the pore water of peat columns during experimental freezing and thawing.
    Sirota JI; Kolka RK; Sebestyen SD; Nater EA
    J Environ Qual; 2020 Mar; 49(2):404-416. PubMed ID: 33016431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of experimental alteration of water table regime and vascular plant community composition on peat mercury profiles and methylmercury production.
    Haynes KM; Kane ES; Potvin L; Lilleskov EA; Kolka RK; Mitchell CPJ
    Sci Total Environ; 2019 Sep; 682():611-622. PubMed ID: 31129544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mercury in the peat bog ecosystem in Xiaoxing'an mountain in China].
    Liu R; Wang Q; Lü X; Ma Z; Fang F
    Huan Jing Ke Xue; 2002 Jul; 23(4):102-6. PubMed ID: 12371089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution and speciation of mercury in the peat bog of Xiaoxing'an Mountain, northeastern China.
    Liu R; Wang Q; Lu X; Fang F; Wang Y
    Environ Pollut; 2003; 124(1):39-46. PubMed ID: 12683981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils.
    Braaten HFV; de Wit HA
    Environ Pollut; 2016 Nov; 218():140-149. PubMed ID: 27552047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment-pore water partitioning.
    Marvin-Dipasquale M; Lutz MA; Brigham ME; Krabbenhoft DP; Aiken GR; Orem WH; Hall BD
    Environ Sci Technol; 2009 Apr; 43(8):2726-32. PubMed ID: 19475941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wetland influence on mercury fate and transport in a temperate forested watershed.
    Selvendiran P; Driscoll CT; Bushey JT; Montesdeoca MR
    Environ Pollut; 2008 Jul; 154(1):46-55. PubMed ID: 18215448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation.
    Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C
    Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region.
    Oswald CJ; Carey SK
    Environ Pollut; 2016 Jun; 213():628-637. PubMed ID: 27017139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of peat and thiol-modified peat application on mercury (im)mobilization in mercury-polluted paddy soil.
    Yao C; He T
    Ecotoxicol Environ Saf; 2023 Apr; 254():114743. PubMed ID: 36905846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems: A latitudinal study across Europe.
    Bravo AG; Kothawala DN; Attermeyer K; Tessier E; Bodmer P; Ledesma JLJ; Audet J; Casas-Ruiz JP; Catalán N; Cauvy-Fraunié S; Colls M; Deininger A; Evtimova VV; Fonvielle JA; Fuß T; Gilbert P; Herrero Ortega S; Liu L; Mendoza-Lera C; Monteiro J; Mor JR; Nagler M; Niedrist GH; Nydahl AC; Pastor A; Pegg J; Gutmann Roberts C; Pilotto F; Portela AP; González-Quijano CR; Romero F; Rulík M; Amouroux D
    Water Res; 2018 Nov; 144():172-182. PubMed ID: 30029076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury dynamics in groundwater across three distinct riparian zone types of the US Midwest.
    Vidon PG; Mitchell CP; Jacinthe PA; Baker ME; Liu X; Fisher KR
    Environ Sci Process Impacts; 2013 Oct; 15(11):2131-41. PubMed ID: 24113840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permafrost Thaw Increases Methylmercury Formation in Subarctic Fennoscandia.
    Tarbier B; Hugelius G; Kristina Sannel AB; Baptista-Salazar C; Jonsson S
    Environ Sci Technol; 2021 May; 55(10):6710-6717. PubMed ID: 33902281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury transport, transformation and mass balance on a perspective of hydrological processes in a subtropical forest of China.
    Sun T; Ma M; Wang X; Wang Y; Du H; Xiang Y; Xu Q; Xie Q; Wang D
    Environ Pollut; 2019 Nov; 254(Pt B):113065. PubMed ID: 31465902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do concepts about catchment cycling of methylmercury and mercury in boreal catchments stand the test of time? Six years of atmospheric inputs and runoff export at Svartberget, northern Sweden.
    Lee YH; Bishop KH; Munthe J
    Sci Total Environ; 2000 Oct; 260(1-3):11-20. PubMed ID: 11032112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Term Experimental Manipulation of Atmospheric Sulfate Deposition to a Peatland: Response of Methylmercury and Related Solute Export in Streamwater.
    McCarter CPR; Sebestyen SD; Coleman Wasik JK; Engstrom DR; Kolka RK; Jeremiason JD; Swain EB; Monson BA; Branfireun BA; Balogh SJ; Nater EA; Eggert SL; Ning P; Mitchell CPJ
    Environ Sci Technol; 2022 Dec; 56(24):17615-17625. PubMed ID: 36445185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposing spatial trends in methylmercury and total mercury along a peatland chronosequence trophic gradient.
    Wang B; Nilsson MB; Eklöf K; Hu H; Ehnvall B; Bravo AG; Zhong S; Åkeblom S; Björn E; Bertilsson S; Skyllberg U; Bishop K
    Sci Total Environ; 2020 May; 718():137306. PubMed ID: 32087589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting MeHg bioaccumulation in stream biota: the role of dissolved organic carbon and diet.
    Broadley HJ; Cottingham KL; Baer NA; Weathers KC; Ewing HA; Chaves-Ulloa R; Chickering J; Wilson AM; Shrestha J; Chen CY
    Ecotoxicology; 2019 Oct; 28(8):949-963. PubMed ID: 31410744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of aquaculture on mercury distribution, changing speciation, and bioaccumulation in a reservoir ecosystem.
    Liang P; Feng X; You Q; Gao X; Xu J; Wong M; Christie P; Wu SC
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25923-25932. PubMed ID: 28940142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region.
    Hall BD; Aiken GR; Krabbenhoft DP; Marvin-Dipasquale M; Swarzenski CM
    Environ Pollut; 2008 Jul; 154(1):124-34. PubMed ID: 18242808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.