These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33016577)

  • 41. Cytological and transcriptome analyses reveal OsPUB73 defect affects the gene expression associated with tapetum or pollen exine abnormality in rice.
    Chen L; Deng R; Liu G; Jin J; Wu J; Liu X
    BMC Plant Biol; 2019 Dec; 19(1):546. PubMed ID: 31823718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Defect in
    Dong S; Zou J; Fang B; Zhao Y; Shi F; Song G; Huang S; Feng H
    Front Plant Sci; 2022; 13():992391. PubMed ID: 36061794
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PERSISTENT TAPETAL CELL2 Is Required for Normal Tapetal Programmed Cell Death and Pollen Wall Patterning.
    Uzair M; Xu D; Schreiber L; Shi J; Liang W; Jung KH; Chen M; Luo Z; Zhang Y; Yu J; Zhang D
    Plant Physiol; 2020 Feb; 182(2):962-976. PubMed ID: 31772077
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pollen-mediated transformation of Sorghum bicolor plants.
    Wang W; Wang J; Yang C; Li Y; Liu L; Xu J
    Biotechnol Appl Biochem; 2007 Oct; 48(Pt 2):79-83. PubMed ID: 17868021
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deficiency of rice hexokinase HXK5 impairs synthesis and utilization of starch in pollen grains and causes male sterility.
    Lee SK; Kim H; Cho JI; Nguyen CD; Moon S; Park JE; Park HR; Huh JH; Jung KH; Guiderdoni E; Jeon JS
    J Exp Bot; 2020 Jan; 71(1):116-125. PubMed ID: 31671177
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deciphering the dynamic gene expression patterns of pollen abortion in a male sterile line of Avena sativa through transcriptome analysis at different developmental stages.
    Zhang L; Ma M; Cui L; Liu L
    BMC Plant Biol; 2021 Feb; 21(1):101. PubMed ID: 33602130
    [TBL] [Abstract][Full Text] [Related]  

  • 47. OsFLA1 encodes a fasciclin-like arabinogalactan protein and affects pollen exine development in rice.
    Deng Y; Wan Y; Liu W; Zhang L; Zhou K; Feng P; He G; Wang N
    Theor Appl Genet; 2022 Apr; 135(4):1247-1262. PubMed ID: 34985538
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two linked genes on rice chromosome 2 for F1 pollen sterility in a hybrid between Oryza sativa and O. glumaepatula.
    Sakata M; Yamagata Y; Doi K; Yoshimura A
    Breed Sci; 2014 Dec; 64(4):309-20. PubMed ID: 25914585
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polyploidy Enhances F1 Pollen Sterility Loci Interactions That Increase Meiosis Abnormalities and Pollen Sterility in Autotetraploid Rice.
    Wu J; Shahid MQ; Chen L; Chen Z; Wang L; Liu X; Lu Y
    Plant Physiol; 2015 Dec; 169(4):2700-17. PubMed ID: 26511913
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification and characterization of the stunted sterile (ss) mutant in rice.
    Son H; Kim B; Lee G; Jang S; Lee Y; Koh HJ
    Genes Genomics; 2020 Aug; 42(8):869-882. PubMed ID: 32506267
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Inheritance of reversions to male fertility in male-sterile sorghum hybrids with 9E cytoplasm male sterility induced by environmental conditions].
    Elkonin LA; Gerashchenkov GA; Domanina IV; Rozhnova NA
    Genetika; 2015 Mar; 51(3):312-23. PubMed ID: 26027370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Silent Exonic Mutation in a Rice Integrin-α FG-GAP Repeat-Containing Gene Causes Male-Sterility by Affecting mRNA Splicing.
    Zou T; Zhou D; Li W; Yuan G; Tao Y; He Z; Zhang X; Deng Q; Wang S; Zheng A; Zhu J; Liang Y; Liu H; Wang A; Wang L; Li P; Li S
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32188023
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RiceAntherNet: a gene co-expression network for identifying anther and pollen development genes.
    Lin H; Yu J; Pearce SP; Zhang D; Wilson ZA
    Plant J; 2017 Dec; 92(6):1076-1091. PubMed ID: 29031031
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phenotypic characterization, genetic analysis, and molecular mapping of a new mutant gene for male sterility in rice.
    Zuo L; Li S; Chu M; Wang S; Deng Q; Ding L; Zhang J; Wen Y; Zheng A; Li P
    Genome; 2008 Apr; 51(4):303-8. PubMed ID: 18356966
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Suppression and restoration of male fertility using a transcription factor.
    Li SF; Iacuone S; Parish RW
    Plant Biotechnol J; 2007 Mar; 5(2):297-312. PubMed ID: 17309685
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evolvement of transgenic male-sterility and fertility-restoration system in rice for production of hybrid varieties.
    Rao GS; Deveshwar P; Sharma M; Kapoor S; Rao KV
    Plant Mol Biol; 2018 Jan; 96(1-2):35-51. PubMed ID: 29090429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Morphological analysis and stage determination of anther development in Sorghum [Sorghum bicolor (L.) Moench].
    Laza HE; Kaur-Kapoor H; Xin Z; Payton PR; Chen J
    Planta; 2022 Mar; 255(4):86. PubMed ID: 35286485
    [TBL] [Abstract][Full Text] [Related]  

  • 58. BrSKS13, a multiple-allele-inherited male sterility-related gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis), affects pollen development and pollination/fertilization process.
    Ji R; Ge W; Wang H; Zhao Y; Feng H
    Gene; 2019 May; 696():113-121. PubMed ID: 30776462
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overexpression of sesame polyketide synthase A leads to abnormal pollen development in Arabidopsis.
    Li T; Yang Y; Liu H; Dossou SSK; Zhou F; Zhou T; Zhao Y
    BMC Plant Biol; 2022 Apr; 22(1):165. PubMed ID: 35366814
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of a Male Sterile Candidate Gene in
    Moriyama T; Shea DJ; Yokoi N; Imakiire S; Saito T; Ohshima H; Saito H; Okamoto S; Fukai E; Okazaki K
    Front Plant Sci; 2022; 13():914671. PubMed ID: 35845645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.