These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 33016610)

  • 1. Genome-based prediction of Bayesian linear and non-linear regression models for ordinal data.
    Pérez-Rodríguez P; Flores-Galarza S; Vaquera-Huerta H; Del Valle-Paniagua DH; Montesinos-López OA; Crossa J
    Plant Genome; 2020 Jul; 13(2):e20021. PubMed ID: 33016610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-enabled prediction of genetic values using radial basis function neural networks.
    González-Camacho JM; de Los Campos G; Pérez P; Gianola D; Cairns JE; Mahuku G; Babu R; Crossa J
    Theor Appl Genet; 2012 Aug; 125(4):759-71. PubMed ID: 22566067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking Parametric and Machine Learning Models for Genomic Prediction of Complex Traits.
    Azodi CB; Bolger E; McCarren A; Roantree M; de Los Campos G; Shiu SH
    G3 (Bethesda); 2019 Nov; 9(11):3691-3702. PubMed ID: 31533955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Would large dataset sample size unveil the potential of deep neural networks for improved genome-enabled prediction of complex traits? The case for body weight in broilers.
    Passafaro TL; Lopes FB; Dórea JRR; Craven M; Breen V; Hawken RJ; Rosa GJM
    BMC Genomics; 2020 Nov; 21(1):771. PubMed ID: 33167865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-genome regression and prediction methods applied to plant and animal breeding.
    de Los Campos G; Hickey JM; Pong-Wong R; Daetwyler HD; Calus MP
    Genetics; 2013 Feb; 193(2):327-45. PubMed ID: 22745228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian compositional models for ordinal response.
    Zhang L; Zhang X; Leach JM; Rahman AF; Yi N
    Stat Methods Med Res; 2024 Jun; 33(6):1043-1054. PubMed ID: 38654396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing genome-wide populus trait prediction through deep convolutional neural networks.
    Duan H; Dai X; Shi Q; Cheng Y; Ge Y; Chang S; Liu W; Wang F; Shi H; Hu J
    Plant J; 2024 Jul; 119(2):735-745. PubMed ID: 38741374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data Augmentation Enhances Plant-Genomic-Enabled Predictions.
    Montesinos-López OA; Solis-Camacho MA; Crespo-Herrera L; Saint Pierre C; Huerta Prado GI; Ramos-Pulido S; Al-Nowibet K; Fritsche-Neto R; Gerard G; Montesinos-López A; Crossa J
    Genes (Basel); 2024 Feb; 15(3):. PubMed ID: 38540344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic-Enabled Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression Package in R.
    Pérez P; de Los Campos G; Crossa J; Gianola D
    Plant Genome; 2010; 3(2):106-116. PubMed ID: 21566722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regularized Ordinal Regression and the ordinalNet R Package.
    Wurm MJ; Rathouz PJ; Hanlon BM
    J Stat Softw; 2021 Sep; 99(6):. PubMed ID: 34512213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway-structured predictive modeling for multi-level drug response in multiple myeloma.
    Zhang X; Li B; Han H; Song S; Xu H; Yi Z; Hong Y; Zhuang W; Yi N
    Bioinformatics; 2018 Nov; 34(21):3609-3615. PubMed ID: 29850860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling animal network data in R using STRAND.
    Ross CT; McElreath R; Redhead D
    J Anim Ecol; 2024 Mar; 93(3):254-266. PubMed ID: 37936514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of feasible and accurate kinetic models of metabolism: A Bayesian approach.
    Saa PA; Nielsen LK
    Sci Rep; 2016 Jul; 6():29635. PubMed ID: 27417285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling discrete survival time using genomic feature data.
    Ferber K; Archer KJ
    Cancer Inform; 2015; 14(Suppl 2):37-43. PubMed ID: 25861216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using visual scores for genomic prediction of complex traits in breeding programs.
    Azevedo CF; Ferrão LFV; Benevenuto J; de Resende MDV; Nascimento M; Nascimento ACC; Munoz PR
    Theor Appl Genet; 2023 Dec; 137(1):9. PubMed ID: 38102495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digitalizing breeding in plants: A new trend of next-generation breeding based on genomic prediction.
    Jeon D; Kang Y; Lee S; Choi S; Sung Y; Lee TH; Kim C
    Front Plant Sci; 2023; 14():1092584. PubMed ID: 36743488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-omics assisted breeding for biotic stress resistance in soybean.
    Bisht A; Saini DK; Kaur B; Batra R; Kaur S; Kaur I; Jindal S; Malik P; Sandhu PK; Kaur A; Gill BS; Wani SH; Kaur B; Mir RR; Sandhu KS; Siddique KHM
    Mol Biol Rep; 2023 Apr; 50(4):3787-3814. PubMed ID: 36692674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Trait Multi-Environment Genomic Prediction for End-Use Quality Traits in Winter Wheat.
    Sandhu KS; Patil SS; Aoun M; Carter AH
    Front Genet; 2022; 13():831020. PubMed ID: 35173770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of deep learning applications for genomic selection.
    Montesinos-López OA; Montesinos-López A; Pérez-Rodríguez P; Barrón-López JA; Martini JWR; Fajardo-Flores SB; Gaytan-Lugo LS; Santana-Mancilla PC; Crossa J
    BMC Genomics; 2021 Jan; 22(1):19. PubMed ID: 33407114
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.