These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 33016711)
1. Beyond the Storage Capacity: Data-Driven Satisfiability Transition. Rotondo P; Pastore M; Gherardi M Phys Rev Lett; 2020 Sep; 125(12):120601. PubMed ID: 33016711 [TBL] [Abstract][Full Text] [Related]
2. Statistical learning theory of structured data. Pastore M; Rotondo P; Erba V; Gherardi M Phys Rev E; 2020 Sep; 102(3-1):032119. PubMed ID: 33075947 [TBL] [Abstract][Full Text] [Related]
3. A local Vapnik-Chervonenkis complexity. Oneto L; Anguita D; Ridella S Neural Netw; 2016 Oct; 82():62-75. PubMed ID: 27474843 [TBL] [Abstract][Full Text] [Related]
4. The Vapnik-Chervonenkis dimension of graph and recursive neural networks. Scarselli F; Tsoi AC; Hagenbuchner M Neural Netw; 2018 Dec; 108():248-259. PubMed ID: 30219742 [TBL] [Abstract][Full Text] [Related]
5. Improving the generalization capacity of cascade classifiers. Ludwig O; Nunes U; Ribeiro B; Premebida C IEEE Trans Cybern; 2013 Dec; 43(6):2135-46. PubMed ID: 23757522 [TBL] [Abstract][Full Text] [Related]
6. Vapnik-Chervonenkis generalization bounds for real valued neural networks. Hole A Neural Comput; 1996 Aug; 8(6):1277-99. PubMed ID: 8768395 [No Abstract] [Full Text] [Related]
7. Assessing Generalization Ability of Majority Vote Point Classifiers. Sevakula RK; Verma NK IEEE Trans Neural Netw Learn Syst; 2017 Dec; 28(12):2985-2997. PubMed ID: 28113524 [TBL] [Abstract][Full Text] [Related]
8. Empirical measure of multiclass generalization performance: the K-winner machine case. Ridella S; Zunino R IEEE Trans Neural Netw; 2001; 12(6):1525-9. PubMed ID: 18249984 [TBL] [Abstract][Full Text] [Related]
9. Terminated Ramp-Support vector machines: a nonparametric data dependent kernel. Merler S; Jurman G Neural Netw; 2006 Dec; 19(10):1597-611. PubMed ID: 16603338 [TBL] [Abstract][Full Text] [Related]
10. Towards more practical average bounds on supervised learning. Gu H; Takahashi H IEEE Trans Neural Netw; 1996; 7(4):953-68. PubMed ID: 18263490 [TBL] [Abstract][Full Text] [Related]
11. Partition-based and sharp uniform error bounds. Bax E IEEE Trans Neural Netw; 1999; 10(6):1315-20. PubMed ID: 18252633 [TBL] [Abstract][Full Text] [Related]
12. Information theoretical approach to the storage capacity of neural networks with binary weights. Suyari H; Matsuba I Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4576-9. PubMed ID: 11970316 [TBL] [Abstract][Full Text] [Related]
13. Using unsupervised analysis to constrain generalization bounds for support vector classifiers. Decherchi S; Ridella S; Zunino R; Gastaldo P; Anguita D IEEE Trans Neural Netw; 2010 Mar; 21(3):424-38. PubMed ID: 20123572 [TBL] [Abstract][Full Text] [Related]
14. Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. Kearns M; Ron D Neural Comput; 1999 Aug; 11(6):1427-53. PubMed ID: 10423502 [TBL] [Abstract][Full Text] [Related]
15. Model complexity control for regression using VC generalization bounds. Cherkassky V; Shao X; Mulier FM; Vapnik VN IEEE Trans Neural Netw; 1999; 10(5):1075-89. PubMed ID: 18252610 [TBL] [Abstract][Full Text] [Related]
17. Towards a Unified Theory of Learning and Information. Alabdulmohsin I Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286212 [TBL] [Abstract][Full Text] [Related]
18. Structural regularized support vector machine: a framework for structural large margin classifier. Xue H; Chen S; Yang Q IEEE Trans Neural Netw; 2011 Apr; 22(4):573-87. PubMed ID: 21385668 [TBL] [Abstract][Full Text] [Related]