These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 33016733)

  • 1. Coherent Structures Modulate Atmospheric Surface Layer Flux-Gradient Relationships.
    Salesky ST; Anderson W
    Phys Rev Lett; 2020 Sep; 125(12):124501. PubMed ID: 33016733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic inversion for Monin-Obukhov similarity parameters from wind noise in a convective boundary layer.
    Hart CR; Nykaza ET; White MJ
    J Acoust Soc Am; 2018 Sep; 144(3):1258. PubMed ID: 30424635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer Efficiency and Organization in Turbulent Transport over Alpine Tundra.
    Mack L; Berntsen TK; Vercauteren N; Pirk N
    Boundary Layer Meteorol; 2024; 190(9):38. PubMed ID: 39220626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of Strong Flux Underestimation by Bulk Parametrizations During Drifting and Blowing Snow.
    Sigmund A; Dujardin J; Comola F; Sharma V; Huwald H; Melo DB; Hirasawa N; Nishimura K; Lehning M
    Boundary Layer Meteorol; 2022; 182(1):119-146. PubMed ID: 35068494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal Wind Profile for Conventionally Neutral Atmospheric Boundary Layers.
    Liu L; Gadde SN; Stevens RJAM
    Phys Rev Lett; 2021 Mar; 126(10):104502. PubMed ID: 33784136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the fluctuation of PM
    Ren Y; Zhang H; Wei W; Cai X; Song Y
    Sci Total Environ; 2020 Mar; 710():136398. PubMed ID: 31927293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On total turbulent energy and the passive and active role of buoyancy in turbulent momentum and mass transfer.
    de Nijs MA; Pietrzak JD
    Ocean Dyn; 2012; 62(6):849-865. PubMed ID: 26069469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sound-speed gradient and refraction in the near-ground atmosphere.
    Wilson DK
    J Acoust Soc Am; 2003 Feb; 113(2):750-7. PubMed ID: 12597170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Profile-Gradient Approaches for the Estimation of Surface Fluxes.
    Basu S
    Boundary Layer Meteorol; 2019; 170(1):29-44. PubMed ID: 30872843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature, atmospheric condition, and particle size on extinction in a plume of volatile aerosol dispersed in the atmospheric surface layer.
    Tsang TT; Pai P; Korgaonkar NV
    Appl Opt; 1988 Feb; 27(3):593-8. PubMed ID: 20523645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-dimensional representation of near-wall dynamics in shear flows, with implications to wall-models.
    Schmid PJ; Sayadi T
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalizing Monin-Obukhov Similarity Theory (1954) for Complex Atmospheric Turbulence.
    Stiperski I; Calaf M
    Phys Rev Lett; 2023 Mar; 130(12):124001. PubMed ID: 37027866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small scale intermittency and bursting in a turbulent channel flow.
    Onorato M; Camussi R; Iuso G
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1447-54. PubMed ID: 11046425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the Sensible Heat Flux Eddy Covariance-Based Exchange Coefficient to Calculate Latent Heat Flux from Moisture Mean Gradients Over Snow.
    González-Herrero S; Sigmund A; Haugeneder M; Hames O; Huwald H; Fiddes J; Lehning M
    Boundary Layer Meteorol; 2024; 190(5):24. PubMed ID: 38706472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale velocity structures in turbulent thermal convection.
    Qiu XL; Tong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036304. PubMed ID: 11580444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous daytime and nighttime forecast of atmospheric optical turbulence from numerical weather prediction models.
    Quatresooz F; Griffiths R; Bardou L; Wilson R; Osborn J; Vanhoenacker-Janvier D; Oestges C
    Opt Express; 2023 Oct; 31(21):33850-33872. PubMed ID: 37859156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turbulent flow modification in the atmospheric surface layer over a dense city.
    Yao L; Liu CH; Brasseur GP; Chao CYH
    Sci Total Environ; 2024 Jan; 909():168315. PubMed ID: 37949130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of turbulent flow over complex aeolian dune fields: the White Sands National Monument.
    Anderson W; Chamecki M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013005. PubMed ID: 24580318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer.
    Katul GG; Konings AG; Porporato A
    Phys Rev Lett; 2011 Dec; 107(26):268502. PubMed ID: 22243189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mean scalar concentration profile in a sheared and thermally stratified atmospheric surface layer.
    Katul GG; Li D; Chameki M; Bou-Zeid E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023004. PubMed ID: 23496607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.