These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Tightening the uncertainty principle for stochastic currents. Polettini M; Lazarescu A; Esposito M Phys Rev E; 2016 Nov; 94(5-1):052104. PubMed ID: 27967074 [TBL] [Abstract][Full Text] [Related]
6. Unified approach to classical speed limit and thermodynamic uncertainty relation. Vo VT; Van Vu T; Hasegawa Y Phys Rev E; 2020 Dec; 102(6-1):062132. PubMed ID: 33465987 [TBL] [Abstract][Full Text] [Related]
7. Quantifying dissipation using fluctuating currents. Li J; Horowitz JM; Gingrich TR; Fakhri N Nat Commun; 2019 Apr; 10(1):1666. PubMed ID: 30971687 [TBL] [Abstract][Full Text] [Related]
8. Physical origins of entropy production, free energy dissipation, and their mathematical representations. Ge H; Qian H Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051133. PubMed ID: 20866211 [TBL] [Abstract][Full Text] [Related]
9. Dissipation bounds the amplification of transition rates far from equilibrium. Kuznets-Speck B; Limmer DT Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593915 [TBL] [Abstract][Full Text] [Related]
10. Coefficient of performance for a low-dissipation Carnot-like refrigerator with nonadiabatic dissipation. Hu Y; Wu F; Ma Y; He J; Wang J; Hernández AC; Roco JM Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062115. PubMed ID: 24483394 [TBL] [Abstract][Full Text] [Related]
11. Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials. Hyeon C; Hwang W Phys Rev E; 2017 Jul; 96(1-1):012156. PubMed ID: 29347275 [TBL] [Abstract][Full Text] [Related]
12. Dissipation-recurrence inequalities at the steady state. Frezzato D Phys Rev E; 2021 Mar; 103(3-1):032112. PubMed ID: 33862676 [TBL] [Abstract][Full Text] [Related]
13. Fluctuating systems under cyclic perturbations: Relation between energy dissipation and intrinsic relaxation processes. Camerin F; Frezzato D Phys Rev E; 2016 Aug; 94(2-1):022117. PubMed ID: 27627256 [TBL] [Abstract][Full Text] [Related]
14. Optimizing energetic cost of uncertainty in a driven system with and without feedback. Vishen AS Phys Rev E; 2020 Nov; 102(5-1):052405. PubMed ID: 33327083 [TBL] [Abstract][Full Text] [Related]
15. Fundamental Bounds on First Passage Time Fluctuations for Currents. Gingrich TR; Horowitz JM Phys Rev Lett; 2017 Oct; 119(17):170601. PubMed ID: 29219443 [TBL] [Abstract][Full Text] [Related]
16. Uncertainty relations for time-delayed Langevin systems. Van Vu T; Hasegawa Y Phys Rev E; 2019 Jul; 100(1-1):012134. PubMed ID: 31499914 [TBL] [Abstract][Full Text] [Related]
17. Local kinetic interpretation of entropy production through reversed diffusion. Porporato A; Kramer PR; Cassiani M; Daly E; Mattingly J Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041142. PubMed ID: 22181122 [TBL] [Abstract][Full Text] [Related]
18. Time reversibility and nonequilibrium thermodynamics of second-order stochastic processes. Ge H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022127. PubMed ID: 25353442 [TBL] [Abstract][Full Text] [Related]
19. Dissipation Bounds All Steady-State Current Fluctuations. Gingrich TR; Horowitz JM; Perunov N; England JL Phys Rev Lett; 2016 Mar; 116(12):120601. PubMed ID: 27058064 [TBL] [Abstract][Full Text] [Related]
20. Simple bounds on fluctuations and uncertainty relations for first-passage times of counting observables. Garrahan JP Phys Rev E; 2017 Mar; 95(3-1):032134. PubMed ID: 28415371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]