BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33016853)

  • 1. Molecular dynamics simulation study on
    N U; S K
    J Biomol Struct Dyn; 2022 Feb; 40(3):1387-1399. PubMed ID: 33016853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation study on
    Upendra N; Kavya KM; Krishnaveni S
    J Biomol Struct Dyn; 2023 Nov; 41(19):9219-9231. PubMed ID: 36444972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disrupting domain-domain interactions is indispensable for EngA-ribosome interactions.
    Majumdar S; Acharya A; Tomar SK; Prakash B
    Biochim Biophys Acta Proteins Proteom; 2017 Mar; 1865(3):289-303. PubMed ID: 27979707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct GDP/GTP bound states of the tandem G-domains of EngA regulate ribosome binding.
    Tomar SK; Dhimole N; Chatterjee M; Prakash B
    Nucleic Acids Res; 2009 Apr; 37(7):2359-70. PubMed ID: 19246542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain arrangement of Der, a switch protein containing two GTPase domains.
    Robinson VL; Hwang J; Fox E; Inouye M; Stock AM
    Structure; 2002 Dec; 10(12):1649-58. PubMed ID: 12467572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium acts as a GTPase-activating element on each nucleotide-binding domain of the essential Bacillus subtilis EngA.
    Foucher AE; Reiser JB; Ebel C; Housset D; Jault JM
    PLoS One; 2012; 7(10):e46795. PubMed ID: 23056455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High concentrations of GTP induce conformational changes in the essential bacterial GTPase EngA and enhance its binding to the ribosome.
    da Silveira Tomé C; Foucher AE; Jault JM; Housset D
    FEBS J; 2018 Jan; 285(1):160-177. PubMed ID: 29148177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational exploration of RbgA using molecular dynamics: Possible implications in ribosome maturation and GTPase activity in different nucleotide bound states.
    Upendra N; Krishnaveni S
    J Mol Graph Model; 2022 Mar; 111():108087. PubMed ID: 34864321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of EngA(MS), a P-loop GTPase of Mycobacterium smegmatis.
    Agarwal N; Pareek M; Thakur P; Pathak V
    PLoS One; 2012; 7(4):e34571. PubMed ID: 22506030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The essential GTPase YphC displays a major domain rearrangement associated with nucleotide binding.
    Muench SP; Xu L; Sedelnikova SE; Rice DW
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12359-64. PubMed ID: 16894162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of the GTPases EngA and YhbZ encoded by Salmonella typhimurium.
    Lamb HK; Thompson P; Elliott C; Charles IG; Richards J; Lockyer M; Watkins N; Nichols C; Stammers DK; Bagshaw CR; Cooper A; Hawkins AR
    Protein Sci; 2007 Nov; 16(11):2391-402. PubMed ID: 17905831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide recognition by the initiation factor aIF5B: free energy simulations of a neoclassical GTPase.
    Simonson T; Satpati P
    Proteins; 2012 Dec; 80(12):2742-57. PubMed ID: 22887821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.
    Meyer S; Böhme S; Krüger A; Steinhoff HJ; Klare JP; Wittinghofer A
    PLoS Biol; 2009 Oct; 7(10):e1000212. PubMed ID: 19806182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active and Inactive Cdc42 Differ in Their Insert Region Conformational Dynamics.
    Haspel N; Jang H; Nussinov R
    Biophys J; 2021 Jan; 120(2):306-318. PubMed ID: 33347888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the GDP-bound GTPase domain of Rab5a from Leishmania donovani.
    Zohib M; Maheshwari D; Pal RK; Freitag-Pohl S; Biswal BK; Pohl E; Arora A
    Acta Crystallogr F Struct Biol Commun; 2020 Nov; 76(Pt 11):544-556. PubMed ID: 33135673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of an essential GTPase, YsxC, from Thermotoga maritima.
    Chan KH; Wong KB
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Jun; 67(Pt 6):640-6. PubMed ID: 21636901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of YjeQ from Thermotoga maritima contains a circularly permuted GTPase domain.
    Shin DH; Lou Y; Jancarik J; Yokota H; Kim R; Kim SH
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13198-203. PubMed ID: 15331784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic free energies in translational GTPases: Classic allostery and the rest.
    Simonson T; Aleksandrov A; Satpati P
    Biochim Biophys Acta; 2015 May; 1850(5):1006-1016. PubMed ID: 25047891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational selection through electrostatics: Free energy simulations of GTP and GDP binding to archaeal initiation factor 2.
    Satpati P; Simonson T
    Proteins; 2012 May; 80(5):1264-82. PubMed ID: 22275120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the conformational flexibility of monomeric FtsZ in GTP-bound, GDP-bound, and nucleotide-free states.
    Natarajan K; Senapati S
    Biochemistry; 2013 May; 52(20):3543-51. PubMed ID: 23617789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.