These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33016857)

  • 21. CHK1 Inhibitor Blocks Phosphorylation of FAM122A and Promotes Replication Stress.
    Li F; Kozono D; Deraska P; Branigan T; Dunn C; Zheng XF; Parmar K; Nguyen H; DeCaprio J; Shapiro GI; Chowdhury D; D'Andrea AD
    Mol Cell; 2020 Nov; 80(3):410-422.e6. PubMed ID: 33108758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis.
    Wang Y; Decker SJ; Sebolt-Leopold J
    Cancer Biol Ther; 2004 Mar; 3(3):305-13. PubMed ID: 14726685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chk1 and Wee1 control genotoxic-stress induced G2-M arrest in melanoma cells.
    Vera J; Raatz Y; Wolkenhauer O; Kottek T; Bhattacharya A; Simon JC; Kunz M
    Cell Signal; 2015 May; 27(5):951-60. PubMed ID: 25683911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Silico Exploration of 1,7-Diazacarbazole Analogs as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and Molecular Dynamics Simulations.
    Gao X; Han L; Ren Y
    Molecules; 2016 May; 21(5):. PubMed ID: 27164065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chk1 inhibition and Wee1 inhibition combine synergistically to impede cellular proliferation.
    Davies KD; Cable PL; Garrus JE; Sullivan FX; von Carlowitz I; Huerou YL; Wallace E; Woessner RD; Gross S
    Cancer Biol Ther; 2011 Nov; 12(9):788-96. PubMed ID: 21892012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. G2-checkpoint targeting and radiosensitization of HPV/p16-positive HNSCC cells through the inhibition of Chk1 and Wee1.
    Busch CJ; Kröger MS; Jensen J; Kriegs M; Gatzemeier F; Petersen C; Münscher A; Rothkamm K; Rieckmann T
    Radiother Oncol; 2017 Feb; 122(2):260-266. PubMed ID: 27939202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ensemble docking-based virtual screening toward identifying inhibitors against Wee1 kinase.
    Li Y; Wu DM; Kong LM; Zhang S; Du H; Sun W; Zhang L; Li Y; Zuo Z
    Future Med Chem; 2019 Aug; 11(15):1889-1906. PubMed ID: 31517534
    [No Abstract]   [Full Text] [Related]  

  • 28. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition.
    Haynes B; Murai J; Lee JM
    Cancer Treat Rev; 2018 Dec; 71():1-7. PubMed ID: 30269007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical Studies on the Selectivity Mechanisms of Glycogen Synthase Kinase 3β (GSK3β) with Pyrazine ATP-competitive Inhibitors by 3DQSAR, Molecular Docking, Molecular Dynamics Simulation and Free Energy Calculations.
    Zhu J; Wu Y; Xu L; Jin J
    Curr Comput Aided Drug Des; 2020; 16(1):17-30. PubMed ID: 31284868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CHK1 kinase inhibition: identification of allosteric hits using MD simulations, pharmacophore modeling, docking and MM-PBSA calculations.
    Al-Shar'i N; Musleh SS
    Mol Divers; 2022 Apr; 26(2):903-921. PubMed ID: 33686514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combination therapy targeting the Chk1 and Wee1 kinases shows therapeutic efficacy in neuroblastoma.
    Russell MR; Levin K; Rader J; Belcastro L; Li Y; Martinez D; Pawel B; Shumway SD; Maris JM; Cole KA
    Cancer Res; 2013 Jan; 73(2):776-84. PubMed ID: 23135916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting replication stress response using polypurine reverse hoogsteen hairpins directed against WEE1 and CHK1 genes in human cancer cells.
    Aubets E; Noé V; Ciudad CJ
    Biochem Pharmacol; 2020 May; 175():113911. PubMed ID: 32173365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA damage checkpoint kinases in cancer.
    Smith HL; Southgate H; Tweddle DA; Curtin NJ
    Expert Rev Mol Med; 2020 Jun; 22():e2. PubMed ID: 32508294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM-GBSA calculation.
    Du J; Sun H; Xi L; Li J; Yang Y; Liu H; Yao X
    J Comput Chem; 2011 Oct; 32(13):2800-9. PubMed ID: 21717478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precise design of highly isoform-selective p21-activated kinase 4 inhibitors: computational insights into the selectivity mechanism through molecular dynamics simulation and binding free energy calculation.
    Su Y; Song P; Wang H; Hu B; Wang J; Cheng MS
    J Biomol Struct Dyn; 2020 Aug; 38(13):3825-3837. PubMed ID: 31490101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations.
    Zhou L; Zhang Y; Chen S; Kmieciak M; Leng Y; Lin H; Rizzo KA; Dumur CI; Ferreira-Gonzalez A; Dai Y; Grant S
    Leukemia; 2015 Apr; 29(4):807-18. PubMed ID: 25283841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting DNA damage response pathways to activate the STING innate immune signaling pathway in human cancer cells.
    Wayne J; Brooks T; Landras A; Massey AJ
    FEBS J; 2021 Aug; 288(15):4507-4540. PubMed ID: 33529438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 4-Phenylpyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione inhibitors of the checkpoint kinase Wee1. Structure-activity relationships for chromophore modification and phenyl ring substitution.
    Palmer BD; Thompson AM; Booth RJ; Dobrusin EM; Kraker AJ; Lee HH; Lunney EA; Mitchell LH; Ortwine DF; Smaill JB; Swan LM; Denny WA
    J Med Chem; 2006 Aug; 49(16):4896-911. PubMed ID: 16884302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and structure-activity relationships of soluble 8-substituted 4-(2-chlorophenyl)-9-hydroxypyrrolo[3,4-c]carbazole-1,3(2H,6H)-diones as inhibitors of the Wee1 and Chk1 checkpoint kinases.
    Smaill JB; Lee HH; Palmer BD; Thompson AM; Squire CJ; Baker EN; Booth RJ; Kraker A; Hook K; Denny WA
    Bioorg Med Chem Lett; 2008 Feb; 18(3):929-33. PubMed ID: 18191399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transformation/transcription domain-associated protein (TRRAP)-mediated regulation of Wee1.
    Calonge TM; Eshaghi M; Liu J; Ronai Z; O'Connell MJ
    Genetics; 2010 May; 185(1):81-93. PubMed ID: 20194963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.