These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33016875)

  • 1. Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior.
    Gridchyn I; Schoenenberger P; O'Neill J; Csicsvari J
    Elife; 2020 Oct; 9():. PubMed ID: 33016875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyramidal Cell-Interneuron Circuit Architecture and Dynamics in Hippocampal Networks.
    English DF; McKenzie S; Evans T; Kim K; Yoon E; Buzsáki G
    Neuron; 2017 Oct; 96(2):505-520.e7. PubMed ID: 29024669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hippocampal pyramidal cell-interneuron spike transmission is frequency dependent and responsible for place modulation of interneuron discharge.
    Marshall L; Henze DA; Hirase H; Leinekugel X; Dragoi G; Buzsáki G
    J Neurosci; 2002 Jan; 22(2):RC197. PubMed ID: 11784809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic activation of cajal-retzius cells reveals their glutamatergic output and a novel feedforward circuit in the developing mouse hippocampus.
    Quattrocolo G; Maccaferri G
    J Neurosci; 2014 Sep; 34(39):13018-32. PubMed ID: 25253849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane properties and synaptic currents evoked in CA1 interneuron subtypes in rat hippocampal slices.
    Morin F; Beaulieu C; Lacaille JC
    J Neurophysiol; 1996 Jul; 76(1):1-16. PubMed ID: 8836204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Entorhinal Cortical Alvear Pathway Differentially Excites Pyramidal Cells and Interneuron Subtypes in Hippocampal CA1.
    Bell KA; Delong R; Goswamee P; McQuiston AR
    Cereb Cortex; 2021 Mar; 31(5):2382-2401. PubMed ID: 33350452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of spike transmission and suppression between principal cells and interneurons in the hippocampus and entorhinal cortex.
    Iwase M; Diba K; Pastalkova E; Mizuseki K
    Hippocampus; 2024 Aug; 34(8):393-421. PubMed ID: 38874439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat.
    Csicsvari J; Hirase H; Czurko A; Buzsáki G
    Neuron; 1998 Jul; 21(1):179-89. PubMed ID: 9697862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures.
    Debanne D; Guérineau NC; Gähwiler BH; Thompson SM
    J Neurophysiol; 1995 Mar; 73(3):1282-94. PubMed ID: 7608771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic activation of parvalbumin and somatostatin interneurons selectively restores theta-nested gamma oscillations and oscillation-induced spike timing-dependent long-term potentiation impaired by amyloid β oligomers.
    Park K; Lee J; Jang HJ; Richards BA; Kohl MM; Kwag J
    BMC Biol; 2020 Jan; 18(1):7. PubMed ID: 31937327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells.
    Maurer AP; Cowen SL; Burke SN; Barnes CA; McNaughton BL
    J Neurosci; 2006 Dec; 26(52):13485-92. PubMed ID: 17192431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The critical role of persistent sodium current in hippocampal gamma oscillations.
    Kang YJ; Clement EM; Sumsky SL; Xiang Y; Park IH; Santaniello S; Greenfield LJ; Garcia-Rill E; Smith BN; Lee SH
    Neuropharmacology; 2020 Jan; 162():107787. PubMed ID: 31550457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-range synchronization of gamma and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model.
    Bibbig A; Traub RD; Whittington MA
    J Neurophysiol; 2002 Oct; 88(4):1634-54. PubMed ID: 12364494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional relation between interneuron input and population activity in the rat hippocampal cornu ammonis 1 area.
    Wierenga CJ; Wadman WJ
    Neuroscience; 2003; 118(4):1129-39. PubMed ID: 12732256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic reconfiguration of hippocampal interneuron circuits during spatial learning.
    Dupret D; O'Neill J; Csicsvari J
    Neuron; 2013 Apr; 78(1):166-80. PubMed ID: 23523593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus.
    Kim S
    PLoS One; 2014; 9(11):e113124. PubMed ID: 25409299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the hippocampus on interneurons of the rat prefrontal cortex.
    Tierney PL; Dégenètais E; Thierry AM; Glowinski J; Gioanni Y
    Eur J Neurosci; 2004 Jul; 20(2):514-24. PubMed ID: 15233760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-specific alterations in synaptic properties of hippocampal CA1 interneurons after kainate treatment.
    Morin F; Beaulieu C; Lacaille JC
    J Neurophysiol; 1998 Dec; 80(6):2836-47. PubMed ID: 9862888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation of somatostatin and parvalbumin interneurons circuit dysfunctions underlying hippocampal theta and gamma oscillations impaired by amyloid β oligomers in vivo.
    Chung H; Park K; Jang HJ; Kohl MM; Kwag J
    Brain Struct Funct; 2020 Apr; 225(3):935-954. PubMed ID: 32107637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus.
    Saudargiene A; Cobb S; Graham BP
    Hippocampus; 2015 Feb; 25(2):208-18. PubMed ID: 25220633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.