These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Proton conductivity as a function of the metal center in porphyrinylphosphonate-based MOFs. Enakieva YY; Zhigileva EA; Fitch AN; Chernyshev VV; Stenina IA; Yaroslavtsev AB; Sinelshchikova AA; Kovalenko KA; Gorbunova YG; Tsivadze AY Dalton Trans; 2021 May; 50(19):6549-6560. PubMed ID: 33890610 [TBL] [Abstract][Full Text] [Related]
4. An unexpected imidazole-induced porphyrinylphosphonate-based MOF-to-HOF structural transformation leading to the enhancement of proton conductivity. Zhigileva EA; Enakieva YY; Chernyshev VV; Senchikhin IN; Demina LI; Martynov AG; Stenina IA; Yaroslavtsev AB; Gorbunova YG; Tsivadze AY Dalton Trans; 2024 Oct; 53(39):16345-16354. PubMed ID: 39315440 [TBL] [Abstract][Full Text] [Related]
5. An anionic porphyrinylphosphonate-based hydrogen-bonded organic framework: optimization of proton conductivity through the exchange of counterions. Zhigileva EA; Enakieva YY; Sinelshchikova AA; Chernyshev VV; Senchikhin IN; Kovalenko KA; Stenina IA; Yaroslavtsev AB; Gorbunova YG; Tsivadze AY Dalton Trans; 2023 Jun; 52(24):8237-8246. PubMed ID: 37249348 [TBL] [Abstract][Full Text] [Related]
6. A Tetradentate Phosphonate Ligand-based Ni-MOF as a Support for Designing High-performance Proton-conducting Materials. Chakraborty D; Ghorai A; Chowdhury A; Banerjee S; Bhaumik A Chem Asian J; 2021 Jun; 16(12):1562-1569. PubMed ID: 33885226 [TBL] [Abstract][Full Text] [Related]
7. Controllable syntheses of porous metal-organic frameworks: encapsulation of Ln(III) cations for tunable luminescence and small drug molecules for efficient delivery. Wang Y; Yang J; Liu YY; Ma JF Chemistry; 2013 Oct; 19(43):14591-9. PubMed ID: 24027201 [TBL] [Abstract][Full Text] [Related]
8. A Comparative Study of Proton Conduction Between a 2D Zinc(II) MOF and Its Corresponding Organic Ligand. Shi ZQ; Ji NN; Wang MH; Li G Inorg Chem; 2020 Apr; 59(7):4781-4789. PubMed ID: 32148025 [TBL] [Abstract][Full Text] [Related]
9. Unique Proton Dynamics in an Efficient MOF-Based Proton Conductor. Wei YS; Hu XP; Han Z; Dong XY; Zang SQ; Mak TC J Am Chem Soc; 2017 Mar; 139(9):3505-3512. PubMed ID: 28192991 [TBL] [Abstract][Full Text] [Related]
10. Comparative Analysis of Proton Conductivity in Two Zn-Based MOFs Featuring Sulfate and Sulfonate Functional Groups. Guo YY; Wang RD; Wei WM; Fang F; Wang L; Zhang SS; Zhang J; Du L; Zhao QH Inorg Chem; 2024 Feb; 63(8):3870-3881. PubMed ID: 38356223 [TBL] [Abstract][Full Text] [Related]
11. pH-dependent proton conducting behavior in a metal-organic framework material. Phang WJ; Lee WR; Yoo K; Ryu DW; Kim B; Hong CS Angew Chem Int Ed Engl; 2014 Aug; 53(32):8383-7. PubMed ID: 24986637 [TBL] [Abstract][Full Text] [Related]
12. Trojan Horse Thiocyanate: Induction and Control of High Proton Conductivity in CPO-27/MOF-74 Metal-Organic Frameworks by Metal Selection and Solvent-Free Mechanochemical Dosing. Lupa M; Kozyra P; Jajko G; Matoga D ACS Appl Mater Interfaces; 2021 Jun; 13(25):29820-29826. PubMed ID: 34137584 [TBL] [Abstract][Full Text] [Related]
13. Proton Conduction in a Phosphonate-Based Metal-Organic Framework Mediated by Intrinsic "Free Diffusion inside a Sphere". Pili S; Argent SP; Morris CG; Rought P; García-Sakai V; Silverwood IP; Easun TL; Li M; Warren MR; Murray CA; Tang CC; Yang S; Schröder M J Am Chem Soc; 2016 May; 138(20):6352-5. PubMed ID: 27182787 [TBL] [Abstract][Full Text] [Related]
14. Proton conductivity in doped aluminum phosphonate sponges. Wegener J; Kaltbeitzel A; Graf R; Klapper M; Müllen K ChemSusChem; 2014 Apr; 7(4):1148-54. PubMed ID: 24573985 [TBL] [Abstract][Full Text] [Related]
15. Synergy between Isomorphous Acid and Basic Metal-Organic Frameworks for Anhydrous Proton Conduction of Low-Cost Hybrid Membranes at High Temperatures. Dong XY; Wang JH; Liu SS; Han Z; Tang QJ; Li FF; Zang SQ ACS Appl Mater Interfaces; 2018 Nov; 10(44):38209-38216. PubMed ID: 30360073 [TBL] [Abstract][Full Text] [Related]
16. Super Proton Conductivity Through Control of Hydrogen-Bonding Networks in Flexible Metal-Organic Frameworks. Kwon NH; Han S; Kim J; Cho ES Small; 2023 Aug; 19(32):e2301122. PubMed ID: 37069772 [TBL] [Abstract][Full Text] [Related]
17. Proton Conduction of Nafion Hybrid Membranes Promoted by NH Wang H; Zhao Y; Shao Z; Xu W; Wu Q; Ding X; Hou H ACS Appl Mater Interfaces; 2021 Feb; 13(6):7485-7497. PubMed ID: 33543925 [TBL] [Abstract][Full Text] [Related]
18. A Preinstalled Protic Cation as a Switch for Superprotonic Conduction in a Metal-Organic Framework. Otsubo K; Nagayama S; Kawaguchi S; Sugimoto K; Kitagawa H JACS Au; 2022 Jan; 2(1):109-115. PubMed ID: 35098227 [TBL] [Abstract][Full Text] [Related]
19. Effect of Imidazole Arrangements on Proton-Conductivity in Metal-Organic Frameworks. Zhang FM; Dong LZ; Qin JS; Guan W; Liu J; Li SL; Lu M; Lan YQ; Su ZM; Zhou HC J Am Chem Soc; 2017 May; 139(17):6183-6189. PubMed ID: 28388068 [TBL] [Abstract][Full Text] [Related]
20. A Nanotubular Metal-Organic Framework with a Narrow Bandgap from Extended Conjugation*. Ayhan MM; Bayraktar C; Yu KB; Hanna G; Yazaydin AO; Zorlu Y; Yücesan G Chemistry; 2020 Nov; 26(65):14813-14816. PubMed ID: 32500561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]