These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33017173)

  • 1. Finding Path Motifs in Large Temporal Graphs Using Algebraic Fingerprints.
    Thejaswi S; Gionis A; Lauri J
    Big Data; 2020 Oct; 8(5):335-362. PubMed ID: 33017173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting list-colored graph motifs in biological networks using branch-and-bound strategy.
    Huang Y; Zhong C
    Comput Biol Med; 2019 Apr; 107():1-9. PubMed ID: 30738296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CeFunMO: A centrality based method for discovering functional motifs with application in biological networks.
    Kouhsar M; Razaghi-Moghadam Z; Mousavian Z; Masoudi-Nejad A
    Comput Biol Med; 2016 Sep; 76():154-9. PubMed ID: 27454243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RANGI: a fast list-colored graph motif finding algorithm.
    Rudi AG; Shahrivari S; Jalili S; Moghadam Kashani ZR
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):504-13. PubMed ID: 23929873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local Multiset Dimension of Amalgamation Graphs.
    Alfarisi R; Susilowati L; Dafik D; Prabhu S
    F1000Res; 2023; 12():95. PubMed ID: 38835804
    [No Abstract]   [Full Text] [Related]  

  • 6. SING: subgraph search in non-homogeneous graphs.
    Di Natale R; Ferro A; Giugno R; Mongiovì M; Pulvirenti A; Shasha D
    BMC Bioinformatics; 2010 Feb; 11():96. PubMed ID: 20170516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved algorithms for enumerating tree-like chemical graphs with given path frequency.
    Ishida Y; Zhao L; Nagamochi H; Akutsu T
    Genome Inform; 2008; 21():53-64. PubMed ID: 19425147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural information content of networks: graph entropy based on local vertex functionals.
    Dehmer M; Emmert-Streib F
    Comput Biol Chem; 2008 Apr; 32(2):131-8. PubMed ID: 18243802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of 2-Path Product Signed Graphs with Its Properties.
    Sinha D; Sharma D
    Comput Intell Neurosci; 2017; 2017():1235715. PubMed ID: 28761437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Complexity of Optimal Design of Temporally Connected Graphs.
    Akrida EC; Gąsieniec L; Mertzios GB; Spirakis PG
    Theory Comput Syst; 2017; 61(3):907-944. PubMed ID: 32025196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameterized algorithmics for finding connected motifs in biological networks.
    Betzler N; van Bevern R; Fellows MR; Komusiewicz C; Niedermeier R
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1296-308. PubMed ID: 21282862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of shapes by editing their shock graphs.
    Sebastian TB; Klein PN; Kimia BB
    IEEE Trans Pattern Anal Mach Intell; 2004 May; 26(5):550-71. PubMed ID: 15460278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Querying graphs in protein-protein interactions networks using feedback vertex set.
    Blin G; Sikora F; Vialette S
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):628-35. PubMed ID: 20498512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tugging graphs faster: efficiently modifying path-preserving hierarchies for browsing paths.
    Archambault D; Munzner T; Auber D
    IEEE Trans Vis Comput Graph; 2011 Mar; 17(3):276-89. PubMed ID: 20421680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distributed query execution engine of big attributed graphs.
    Batarfi O; Elshawi R; Fayoumi A; Barnawi A; Sakr S
    Springerplus; 2016; 5(1):665. PubMed ID: 27350905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path matching and graph matching in biological networks.
    Yang Q; Sze SH
    J Comput Biol; 2007; 14(1):56-67. PubMed ID: 17381346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network orientation via shortest paths.
    Silverbush D; Sharan R
    Bioinformatics; 2014 May; 30(10):1449-55. PubMed ID: 24470573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A minimum resource neural network framework for solving multiconstraint shortest path problems.
    Zhang J; Zhao X; He X
    IEEE Trans Neural Netw Learn Syst; 2014 Aug; 25(8):1566-82. PubMed ID: 25050952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edge compression techniques for visualization of dense directed graphs.
    Dwyer T; Henry Riche N; Marriott K; Mears C
    IEEE Trans Vis Comput Graph; 2013 Dec; 19(12):2596-605. PubMed ID: 24051826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A binary linear programming formulation of the graph edit distance.
    Justice D; Hero A
    IEEE Trans Pattern Anal Mach Intell; 2006 Aug; 28(8):1200-14. PubMed ID: 16886857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.